publication . Other literature type . Article . Preprint . 2001

A laboratory analogue of the event horizon using slow light in an atomic medium

Ulf Leonhardt;
Open Access
  • Published: 09 Nov 2001
  • Publisher: Springer Science and Business Media LLC
Abstract
Catastrophes are at the heart of many fascinating optical phenomena. The rainbow, for example, is a ray catastrophe where light rays become infinitely intense. The wave nature of light resolves the infinities of ray catastrophes while drawing delicate interference patterns such as the supernumerary arcs of the rainbow. Black holes cause wave singularities. Waves oscillate with infinitely small wave lengths at the event horizon where time stands still. The quantum nature of light avoids this higher level of catastrophic behaviour while producing a quantum phenomenon known as Hawking radiation. As this letter describes, light brought to a standstill in laboratory ...
Subjects
free text keywords: Multidisciplinary, Physics - Optics, Physics - General Physics, Catastrophe theory, Black hole, Quantum mechanics, Ray, Photon, Event horizon, Quantum, Physics, Gravitational singularity, Vacuum energy
30 references, page 1 of 2

2. Misner, Ch. W., Thorne, K. S. & Wheeler, J. A. Gravitation (Freeman, New York, 1999).

3. Hawking, S. M. Black hole explosions? Nature 248, 30-31 (1974). [OpenAIRE]

4. Liu, Ch., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490-493 (2001). [OpenAIRE]

5. Philips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of Light in Atomic Vapor. Phys. Rev. Lett. 86, 783-786 (2001). [OpenAIRE]

6. Dutton, Z., Budde, M., Slowe, C. & Hau L. V. Observation of quantum shock waves created with ultra-compressed slow light pulses in a BoseEinstein condensate. Science 293, 663-668 (2001).

7. Born, M. & Wolf, E. Principles of Optics (Cambridge University Press, Cambridge, 1999).

8. Thom, R. Stabilit´e structurelle et morphog´en`ese (Benjamin, Reading, 1972).

9. Poston, T. & Stewart, I. Catastrophe Theory and Its Applications (Dover, Mineola, 1996).

10. Schleich, W. & Scully, M. O. General relativity and modern optics. Les Houches Session XXXVIII New trends in atomic physics (Elsevier, Amsterdam, 1984).

11. Wang, L. J., Kuzmich, A. & Dogariu, A. Gainassisted superluminal light propagation. Nature 406, 277-279 (2000). [OpenAIRE]

12. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594-598 (1999).

13. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge University Press, Cambridge, 1997).

14. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically-induced transparency. Phys. Rev. Lett. 84, 5094-5097 (2000). [OpenAIRE]

15. Leonhardt, U. & Piwnicki, P. Relativistic effects of light in moving media with extremely low group velocity. Phys. Rev. Lett. 84, 822-825 (2000). [OpenAIRE]

16. Weinberg, S. The Quantum Theory of Fields (Cambridge University Press, Cambridge, 1999).

30 references, page 1 of 2
Any information missing or wrong?Report an Issue