Quantum catastrophe of slow light

Preprint English OPEN
Leonhardt, Ulf;
(2001)

Catastrophes are at the heart of many fascinating optical phenomena. The rainbow, for example, is a ray catastrophe where light rays become infinitely intense. The wave nature of light resolves the infinities of ray catastrophes while drawing delicate interference patte... View more
  • References (30)
    30 references, page 1 of 3

    2. Misner, Ch. W., Thorne, K. S. & Wheeler, J. A. Gravitation (Freeman, New York, 1999).

    3. Hawking, S. M. Black hole explosions? Nature 248, 30-31 (1974).

    4. Liu, Ch., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490-493 (2001).

    5. Philips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of Light in Atomic Vapor. Phys. Rev. Lett. 86, 783-786 (2001).

    6. Dutton, Z., Budde, M., Slowe, C. & Hau L. V. Observation of quantum shock waves created with ultra-compressed slow light pulses in a BoseEinstein condensate. Science 293, 663-668 (2001).

    7. Born, M. & Wolf, E. Principles of Optics (Cambridge University Press, Cambridge, 1999).

    8. Thom, R. Stabilit´e structurelle et morphog´en`ese (Benjamin, Reading, 1972).

    9. Poston, T. & Stewart, I. Catastrophe Theory and Its Applications (Dover, Mineola, 1996).

    10. Schleich, W. & Scully, M. O. General relativity and modern optics. Les Houches Session XXXVIII New trends in atomic physics (Elsevier, Amsterdam, 1984).

    11. Wang, L. J., Kuzmich, A. & Dogariu, A. Gainassisted superluminal light propagation. Nature 406, 277-279 (2000).

  • Related Organizations (3)
  • Metrics
Share - Bookmark