Bilipschitz embedding of homogeneous fractals

Preprint English OPEN
Lü, Fan; Lou, Man-Li; Wen, Zhi-Ying; Xi, Li-Feng;
  • Subject: 28A80 | Mathematics - Metric Geometry
    arxiv: Mathematics::Metric Geometry

In this paper, we introduce a class of fractals named homogeneous sets based on some measure versions of homogeneity, uniform perfectness and doubling. This fractal class includes all Ahlfors-David regular sets, but most of them are irregular in the sense that they may ... View more
  • References (23)
    23 references, page 1 of 3

    [1] Beardon, A. F. and Pommerenke, C.: The Poincar´e metric of plane domains, J. London Math. Soc., 18(3): 475-483 (1978)

    [2] Cawley, R. and Mauldin, R. D.: Multifractal decompositions of Moran fractals, Adv. Math., 92: 196-236 (1992)

    [3] David, G. and Semmes, S.: Fractured fractals and broken dreams: self-similar geometriy through metric and measure, Oxford University Press, New York, 1997

    [4] Deng, J., Wen, Z. Y., Xiong, Y. and Xi, L. F.: Bilipschitz embedding of self-similar sets, J. Anal. Math., 114: 63-97 (2011)

    [5] Falconer, K. J.: Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc., 106(2): 543-554 (1989)

    [6] Falconer, K. J. and Marsh, D. T.: On the Lipschitz equivalence of Cantor sets, Mathematika, 39(2): 223-233 (1992)

    [7] Feng, D. J., Wen, Z. Y. and Wu, J.: Some dimension results for homogeneous Moran sets, Sci. China Ser. A., 40(5): 475-482 (1997)

    [8] Hutchinson, J. E.: Fractals and self similarity, Indiana Univ. Math. J., 30: 713-747 (1981)

    [9] Llorente, M. and Mattila, P.: Lipschitz equivalence of subsets of self-conformal sets. Nonlinearity 23(4): 875-882 (2010)

    [10] Luukkainen, J. and Saksman, E.: Every complete doubling metric space carries a doubling measure, Proc. Amer. Math. Soc., 126(2): 531-534 (1998)

  • Metrics
Share - Bookmark