publication . Preprint . Article . 2009

Feasibility of satellite quantum key distribution

Cristian Bonato; Andrea Tomaello; V. Da Deppo; Giampiero Naletto; Paolo Villoresi;
Open Access English
  • Published: 12 Mar 2009
Abstract
In this paper we present a novel analysis of the feasibility of quantum key distribution between a LEO satellite and a ground station. First of all, we study signal propagation through a turbulent atmosphere for uplinks and downlinks, discussing the contribution of beam spreading and beam wandering. Then we introduce a model for the background noise of the channel during night-time and day-time, calculating the signal-to-noise ratio for different configurations. We also discuss the expected error-rate due to imperfect polarization-compensation in the channel. Finally, we calculate the expected key generation rate of a secure key for different configurations (upl...
Persistent Identifiers
Subjects
arXiv: Computer Science::Networking and Internet ArchitectureComputer Science::Information Theory
free text keywords: Quantum Physics, General Physics and Astronomy, Quantum entanglement, Quantum key distribution, Physics, Radio propagation, Key generation, Electronic engineering, BB84, Background noise, Communication channel, Telecommunications link
37 references, page 1 of 3

[1] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.

[2] D. Bouwmeester, Artur Ekert, and Anton Zeilinger. The Physics of Quantum Information. Springer, 2000.

[3] G. Jaeger. Quantum Information: an overview. CSpringer, 2006.

[4] Nicolas Gisin, Gr´egoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. Quantum cryptography. Rev. Mod. Phys., 74(1):145-195, Mar 2002.

[5] A. V. Sergienko, editor. Quantum Communication and Cryptography. CRC, 2005.

[6] Hoi-Kwong Lo and Yi Zhao. Quantum cryptography. arXiv:0803.2507.

[7] Charles H. Bennett, Gilles Brassard, Claude Cr´epeau, Richard Jozsa, Asher Peres, and William K. Wootters. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett., 70(13):1895-1899, Mar 1993.

[8] Phillip Kaye, Raymond Laflamme, and Michele Mosca. An Introductionto Quantum Computing. Oxford University Press, USA, 2007.

[9] Hiroki Takesue, Sae Woo Nam, Qiang Zhang, Robert H. Hadfield, Toshimori Honjo, Kiyoshi Tamaki, and Yoshihisa Yamamoto. Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors. Nat. Phot., 1:343-348, 2007.

[10] R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger. Entanglement based quantum communication over 144 km. Nature Physics, 3:481-486, 2007. [OpenAIRE]

[11] http://www.secoqc.net/.

[12] Cheng-Zhi Peng, Tao Yang, Xiao-Hui Bao, Jun-Zhang, Xian-Min Jin, Fa-Jong Feng, Bin Yang, Jian Yang, Juan Yin, Qian Zhang, Nan Li, Bao-Li Tian, and Jian-Wei Pan. Experimental freespace distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett., 94:150501, 2005.

[13] T. Schmitt-Manderbach, H. Weier, M. Furst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett., 98(1):010504, 2007. [OpenAIRE]

[14] P. Villoresi, T. Jennewein, F. Tamburini, M. Aspelmeyer, C. Bonato, R. Ursin, C. Pernechele, V. Luceri, G. Bianco, A. Zeilinger, and C. Barbieri. Experimental verification of the feasibility of a quantum channel between space and earth. New J. Phys., 10(033038), 2008. [OpenAIRE]

[15] Ronald Fante. Electromagnetic beam propagation in turbulent media: an update. Proceedings of the IEEE, 68:1424-1443, 1980.

37 references, page 1 of 3
Any information missing or wrong?Report an Issue