LIE n-RACKS

Preprint English OPEN
Biyogmam, Guy Roger;
(2011)
  • Subject: Mathematics - Rings and Algebras | 17AXX, 18E10, 18G35
    arxiv: Mathematics::Geometric Topology | Mathematics::Quantum Algebra | Computer Science::Robotics | Mathematics::Category Theory

In this paper, we introduce the category of Lie $n$-racks and generalize several results known on racks. In particular, we show that the tangent space of a Lie $n$-Rack at the neutral element has a Leibniz $n$-algebra structure. We also define a cohomology theory of $n$... View more
  • References (19)
    19 references, page 1 of 2

    [1] Andruskiewitsch, N. and M. Gran˜a, From racks to pointed Hopf algebras, Adv. Math. 178 (2003) 177-243.

    [2] Bagger, J., N. Lambert, Gauge Symmetry and Supersymmetry of Multiple M2- Branes,Phys. Rev. D77(6), 2008.

    [3] Conway J., G. Wraith, Unpublished correspondence (1958).

    [4] Carter J. S., D. Jelsovsky, S. Kamada, L. Langford, M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355, 10 (2003), 3947-3989.

    [5] Casas, J. M., J. L. Loday, T. Pirashvili, Leibniz n-algebras, Forum Math. 14, (2002), 189-207.

    [6] Covez, S., The local integration of Leibniz algebras , 2010, arXiv:1011.4112v1

    [7] Etingof P., M. Gran˜a, On rack cohomology, J. Pure Appl. Algebra 177 (2003), no. 1, 49-59.

    [8] Fenn R., C. Rourke, B. Sanderson, James bundles and applications, Proc. London Math. Soc. 3, 89 (2004), no. 1, 217-240.

    [9] Filippov, V. T., n-Lie algebras, Sibirsh. Mat. Zh. 26, 6 (1985):126-140.

    [10] Furuuchi, K., D. Tomino, Supersymmetric reduced models with a symmetry based on Filippov algebra, 2009. arXiv:0902.2041v3.

  • Metrics
    No metrics available
Share - Bookmark