On Uniformly finitely extensible Banach spaces

Preprint English OPEN
Castillo, Jesús M. F. ; Ferenczi, Valentin ; Moreno, Yolanda (2013)
  • Subject: Mathematics - Functional Analysis
    arxiv: Mathematics::General Topology | Mathematics::Functional Analysis

We continue the study of Uniformly Finitely Extensible Banach spaces (in short, UFO) initiated in Moreno-Plichko, \emph{On automorphic Banach spaces}, Israel J. Math. 169 (2009) 29--45 and Castillo-Plichko, \emph{Banach spaces in various positions.} J. Funct. Anal. 259 ... View more
  • References (50)
    50 references, page 1 of 5

    k X ǫjxjk1F/θ ≤ j

    [1] G. Androulakis and K. Beanland, A hereditarily indecomposable asymptotic ℓ2 Banach space, Glasgow Math. J. 48 (2006) 503-532.

    [2] G. Androulakis and Th. Schlumprecht, Strictly singular, non-compact operators exist on the space of Gowers and Maurey, J. London Math. Soc. (2) 64 (2001), no. 3, 655-674.

    [3] R. Anisca, On the ergodicity of Banach spaces with property (H). Extracta Math. 26 (2011), 165-171.

    [4] S. Argyros, K. Beanland and Th. Raikoftsalis, A weak Hilbert space with few symmetries, C.R.A.S. Paris, ser I, 348 (2010) 1293-1296.

    [5] S.A. Argyros and Deliyanni, Examples of asymptotically ℓ1 Banach spaces, Trans. Amer. Math. Soc. 349 (1997) 973-995.

    [6] S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht and D. Zisimopoulou, Embedding uniformly convex spaces into spaces with very few operators, J. Funct. Anal. 262 (2012) 825-849.

    [7] S.A. Argyros and R.G. Haydon, A hereditarily indecomposable L∞-space that solve the scalarplus-compact problem, Acta Math. 206 (2011) 1-54.

    [8] S.A. Argyros and T. Raikoftsalis, The cofinal property of the reflexive indecomposable Banach spaces. To appear in Ann. Inst. Fourier (Grenoble).

    [9] S. Argyros and A. Tollias, Methods in the theory of hereditarily indecomposable Banach spaces, Mem. Amer. Math. Soc. 806 (2004).

  • Metrics
    No metrics available
Share - Bookmark