On Uniformly finitely extensible Banach spaces

Preprint English OPEN
Castillo, Jesús M. F. ; Ferenczi, Valentin ; Moreno, Yolanda (2013)
  • Subject: Mathematics - Functional Analysis
    arxiv: Mathematics::General Topology | Mathematics::Functional Analysis

We continue the study of Uniformly Finitely Extensible Banach spaces (in short, UFO) initiated in Moreno-Plichko, \emph{On automorphic Banach spaces}, Israel J. Math. 169 (2009) 29--45 and Castillo-Plichko, \emph{Banach spaces in various positions.} J. Funct. Anal. 259 (2010) 2098-2138. We show that they have the Uniform Approximation Property of Pe\l czy\'nski and Rosenthal and are compactly extensible. We will also consider their connection with the automorphic space problem of Lindenstrauss and Rosenthal --do there exist automorphic spaces other than $c_0(I)$ and $\ell_2(I)$?-- showing that a space all whose subspaces are UFO must be automorphic when it is Hereditarily Indecomposable (HI), and a Hilbert space when it is either locally minimal or isomorphic to its square. We will finally show that most HI --among them, the super-reflexive HI space constructed by Ferenczi-- and asymptotically $\ell_2$ spaces in the literature cannot be automorphic.
  • References (50)
    50 references, page 1 of 5

    k X ǫjxjk1F/θ ≤ j

    [1] G. Androulakis and K. Beanland, A hereditarily indecomposable asymptotic ℓ2 Banach space, Glasgow Math. J. 48 (2006) 503-532.

    [2] G. Androulakis and Th. Schlumprecht, Strictly singular, non-compact operators exist on the space of Gowers and Maurey, J. London Math. Soc. (2) 64 (2001), no. 3, 655-674.

    [3] R. Anisca, On the ergodicity of Banach spaces with property (H). Extracta Math. 26 (2011), 165-171.

    [4] S. Argyros, K. Beanland and Th. Raikoftsalis, A weak Hilbert space with few symmetries, C.R.A.S. Paris, ser I, 348 (2010) 1293-1296.

    [5] S.A. Argyros and Deliyanni, Examples of asymptotically ℓ1 Banach spaces, Trans. Amer. Math. Soc. 349 (1997) 973-995.

    [6] S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht and D. Zisimopoulou, Embedding uniformly convex spaces into spaces with very few operators, J. Funct. Anal. 262 (2012) 825-849.

    [7] S.A. Argyros and R.G. Haydon, A hereditarily indecomposable L∞-space that solve the scalarplus-compact problem, Acta Math. 206 (2011) 1-54.

    [8] S.A. Argyros and T. Raikoftsalis, The cofinal property of the reflexive indecomposable Banach spaces. To appear in Ann. Inst. Fourier (Grenoble).

    [9] S. Argyros and A. Tollias, Methods in the theory of hereditarily indecomposable Banach spaces, Mem. Amer. Math. Soc. 806 (2004).

  • Metrics
    No metrics available
Share - Bookmark