On Uniformly finitely extensible Banach spaces

Subject: Mathematics  Functional Analysisarxiv: Mathematics::General Topology  Mathematics::Functional Analysis

References
(50)
k X ǫjxjk1F/θ ≤ j
[1] G. Androulakis and K. Beanland, A hereditarily indecomposable asymptotic ℓ2 Banach space, Glasgow Math. J. 48 (2006) 503532.
[2] G. Androulakis and Th. Schlumprecht, Strictly singular, noncompact operators exist on the space of Gowers and Maurey, J. London Math. Soc. (2) 64 (2001), no. 3, 655674.
[3] R. Anisca, On the ergodicity of Banach spaces with property (H). Extracta Math. 26 (2011), 165171.
[4] S. Argyros, K. Beanland and Th. Raikoftsalis, A weak Hilbert space with few symmetries, C.R.A.S. Paris, ser I, 348 (2010) 12931296.
[5] S.A. Argyros and Deliyanni, Examples of asymptotically ℓ1 Banach spaces, Trans. Amer. Math. Soc. 349 (1997) 973995.
[6] S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht and D. Zisimopoulou, Embedding uniformly convex spaces into spaces with very few operators, J. Funct. Anal. 262 (2012) 825849.
[7] S.A. Argyros and R.G. Haydon, A hereditarily indecomposable L∞space that solve the scalarpluscompact problem, Acta Math. 206 (2011) 154.
[8] S.A. Argyros and T. Raikoftsalis, The cofinal property of the reflexive indecomposable Banach spaces. To appear in Ann. Inst. Fourier (Grenoble).
[9] S. Argyros and A. Tollias, Methods in the theory of hereditarily indecomposable Banach spaces, Mem. Amer. Math. Soc. 806 (2004).

Metrics
No metrics available

 Download from


Cite this publication