Infinitesimal deformations of a formal symplectic groupoid

Preprint English OPEN
Karabegov, Alexander;
(2010)
  • Related identifiers: doi: 10.1007/s11005-011-0495-8
  • Subject: 53D55, 53D17 | Mathematics - Quantum Algebra
    arxiv: Mathematics::K-Theory and Homology | Mathematics::Symplectic Geometry | Mathematics::Category Theory | Mathematics::Operator Algebras

Given a formal symplectic groupoid $G$ over a Poisson manifold $(M, \pi_0)$, we define a new object, an infinitesimal deformation of $G$, which can be thought of as a formal symplectic groupoid over the manifold $M$ equipped with an infinitesimal deformation $\pi_0 + \e... View more
  • References (15)
    15 references, page 1 of 2

    [1] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D.: Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Physics 111 (1978), no. 1, 61 - 110.

    [2] Bordemann, M. and Waldmann, S.: A Fedosov star product of the Wick type for K¨ahler manifolds. Lett. Math. Phys. 41 (3) (1997), 243 - 253.

    [3] Cattaneo, A.S., Dherin B., Felder, G.: Formal symplectic groupoid. Commun. Math. Phys. 253 (2005), 645-674.

    [4] Engliˇs, M.: Weighted Bergman kernels and quantization. Commun. Math. Phys. 227 (2002), 211-241.

    [5] Fedosov, B.: A simple geometrical construction of deformation quantization.

    [6] Gutt, S. and Rawnsley, J.: Natural star products on symplectic manifolds and quantum moment maps. Lett. Math. Phys. 66(2003), 123 -139.

    [7] Karabegov, A.: Deformation quantizations with separation of variables on a K¨ahler manifold. Commun. Math. Phys. 180 (1996), 745-755.

    [8] Karabegov, A.: On the dequantization of Fedosov's deformation quantization. Lett. Math. Phys. 65 (2003), 133 - 146.

    [9] Karabegov, A.: Formal symplectic groupoid of a deformation quantization. Commun. Math. Phys. 258 (2005), 223-256.

    [10] Karabegov, A.: Deformation quantization of a K¨ahler-Poisson structure vanishing on a Levi nondegenerate hypersurface. Contemporary Math. 450 (2008), 163 - 171.

  • Metrics
Share - Bookmark