publication . Preprint . Article . 2010

Infinitesimal Deformations of a Formal Symplectic Groupoid

Alexander Karabegov;
Open Access English
  • Published: 14 Aug 2010
Abstract
Comment: 22 pages, the paper is reworked, new proofs are added
Subjects
arXiv: Mathematics::Symplectic GeometryMathematics::Operator AlgebrasMathematics::Category TheoryMathematics::K-Theory and Homology
free text keywords: Mathematics - Quantum Algebra, 53D55, 53D17, Mathematical Physics, Statistical and Nonlinear Physics, Star product, Symplectic geometry, Separation of variables, Topology, Berezin transform, Mathematical analysis, Infinitesimal, Poisson manifold, Bivector, Manifold, Mathematics

[1] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D.: Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Physics 111 (1978), no. 1, 61 - 110. [OpenAIRE]

[2] Bordemann, M. and Waldmann, S.: A Fedosov star product of the Wick type for K¨ahler manifolds. Lett. Math. Phys. 41 (3) (1997), 243 - 253. [OpenAIRE]

[3] Cattaneo, A.S., Dherin B., Felder, G.: Formal symplectic groupoid. Commun. Math. Phys. 253 (2005), 645-674. [OpenAIRE]

[4] Engliˇs, M.: Weighted Bergman kernels and quantization. Commun. Math. Phys. 227 (2002), 211-241.

[5] Fedosov, B.: A simple geometrical construction of deformation quantization.

[6] Gutt, S. and Rawnsley, J.: Natural star products on symplectic manifolds and quantum moment maps. Lett. Math. Phys. 66(2003), 123 -139. [OpenAIRE]

[7] Karabegov, A.: Deformation quantizations with separation of variables on a K¨ahler manifold. Commun. Math. Phys. 180 (1996), 745-755. [OpenAIRE]

[8] Karabegov, A.: On the dequantization of Fedosov's deformation quantization. Lett. Math. Phys. 65 (2003), 133 - 146. [OpenAIRE]

[9] Karabegov, A.: Formal symplectic groupoid of a deformation quantization. Commun. Math. Phys. 258 (2005), 223-256. [OpenAIRE]

[10] Karabegov, A.: Deformation quantization of a K¨ahler-Poisson structure vanishing on a Levi nondegenerate hypersurface. Contemporary Math. 450 (2008), 163 - 171.

[11] Karasev, M. V.: Analogues of the objects of Lie group theory for nonlinear Poisson brackets. Math. USSR Izvestiya 28 (1987), 497 - 527. [OpenAIRE]

[12] Kontsevich, M.: Deformation quantization of Poisson manifolds, I. Lett. Math. Phys. 66 (2003), 157 - 216. [OpenAIRE]

[13] Leichtnam, E., Tang, X., and Weinstein, A.: Poisson geometry and deformation quantization near a strictly pseudoconvex boundary. Journal of the European Mathematical Society, 9, (2007), 681 - 704.

[14] Weinstein, A.: Symplectic groupoids and Poisson manifolds. . Bull. Am. Math. Soc. (N.S.) 16 (1987), 101 -103.

[15] Zakrzewski, S.: Quantum and classical pseudogroups, I and II. Commun. Math. Phys. 134 (1990), 347 - 395. (Alexander Karabegov) Department of Mathematics, Abilene Christian University, ACU Box 28012, Abilene, TX 79699-8012 E-mail address : axk02d@acu.edu [OpenAIRE]

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Article . 2010

Infinitesimal Deformations of a Formal Symplectic Groupoid

Alexander Karabegov;