Irreducible tensor products for alternating groups in characteristic 5

Preprint English OPEN
Morotti, Lucia;
(2018)
  • Subject: Mathematics - Representation Theory

In this paper we study irreducible tensor products of representations of alternating groups and classify such products in characteristic 5.
  • References (12)
    12 references, page 1 of 2

    [1] M. Aschbacher. On the maximal subgroups of the finite classical groups. Invent. Math. 76 (1984), 469-514.

    [2] M.Aschbacher, L. Scott. Maximal subgroups of finite groups. J. Algebra 92 (1985), 44-80.

    [3] A.A. Baranov, A.S. Kleshchev, A.E. Zalesskii, Asymptotic results on modular representations of symmetric groups and almost simple modular group algebras, J. Algebra 219 (1999), 506-530.

    [4] C. Bessenrodt. On mixed products of complex characters of the double covers of the symmetric groups. Pacific J. Math. 199 (2001) 257-268.

    [5] C. Bessenrodt, A.S. Kleshchev, On Kronecker products of irreducible complex representations of the symmetric and alternating groups, Pacific J. Math. 190 (1999), 201-223.

    [6] C. Bessenrodt, A.S. Kleshchev, On tensor products of modular representations of symmetric groups, Bull. London Math. Soc. 32 (2000), 292-296.

    [7] C. Bessenrodt, A.S. Kleshchev, Irreducible Tensor Products over Alternating Groups, J. Algebra 228 (2000), 536-550.

    [8] C. Bessenrodt, A.S. Kleshchev. On Kronecker products of spin characters of the double covers of the symmetric groups. Pacific J. Math. 198 (2001), 295-305.

    [9] C. Bessenrodt, J.B. Olsson, Residue symbols and Jantzen-Seitz partitions, J. Combin. Theory Ser. A 81 (1998), 201-230.

    [25] A.S. Kleshchev, P. H. Tiep. On restrictions of modular spin representations of symmetric and alternating groups. Trans. Amer. Math. Soc. 356 (2004), 1971-1999.

  • Related Organizations (1)
  • Metrics
Share - Bookmark