publication . Preprint . 2007

Certainty and Uncertainty in Quantum Information Processing

Rieffel, Eleanor G.;
Open Access English
  • Published: 12 Feb 2007
Abstract
This survey, aimed at information processing researchers, highlights intriguing but lesser known results, corrects misconceptions, and suggests research areas. Themes include: certainty in quantum algorithms; the "fewer worlds" theory of quantum mechanics; quantum learning; probability theory versus quantum mechanics.
Subjects
free text keywords: Quantum Physics
Download from
62 references, page 1 of 5

[Aaronson 2005a] Aaronson, S. 2005a. Are quantum states exponentially long vectors? quant-ph/0507242.

[Aaronson 2005b] Aaronson, S. 2005b. Quantum computing, postselection, and probabilistic polynomial-time. Proceedings of the Royal Society A 461:3473-3482.

[Aharonov et al. 2004] Aharonov, D.; van Dam, W.; Kempe, J.; Landau, Z.; Lloyd, S.; and Regev, O. 2004.

Adiabatic quantum computation is equivalent to standard quantum computation. /quant-ph/0405098.

[Aharonov, Landau, & Makowsky 2006] Aharonov, D.; Landau, Z.; and Makowsky, J. 2006. The quantum FFT can be classically simulated. Los Alamos Physics Preprint Archive, http://xxx.lanl.gov/abs/quantph/0611156. [OpenAIRE]

[Ambainis 2000] Ambainis, A. 2000. Quantum lower bounds by quantum arguments. In STOC '00: Proceedings of the thirty-second annual ACM symposium on Theory of computing, 636-643. [OpenAIRE]

[Atici & Servedio 2005] Atici, A., and Servedio, R. 2005.

Improved bounds on quantum learning algorithms. Quantum Information Processing 4(5):355-386.

[Beals et al. 2001] Beals, R.; Buhrman, H.; Cleve, R.; Mosca, M.; and de Wolf, R. 2001. Quantum lower bounds by polynomials. J. ACM 48(4):778-797. [OpenAIRE]

[Bennett et al. 1997] Bennett, C. H.; Bernstein, E.; Brassard, G.; and Vazirani, U. V. 1997. Strengths and weaknesses of quantum computing. Society for Industrial and Applied Mathematics Journal on Computing 26(5):1510- 1523.

[Bennett 1989] Bennett, C. H. 1989. Time/space trade-offs for reversible computation. Society for Industrial and Applied Mathematics Journal on Computing 18(4):766-776.

[Brassard, Høyer, & Tapp 1998] Brassard, G.; Høyer, P.; and Tapp, A. 1998. Quantum counting. Lecture Notes in Computer Science 1443:820 - 831. [OpenAIRE]

[Bruss 2002] Bruss, D. 2002. Characterizing entanglement.

Journal of Mathematical Physics 43(9):4237-4250.

[Bshouty & Jackson 1999] Bshouty, N. H., and Jackson, J. C. 1999. Learning DNF over the uniform distribution using a quantum example oracle. SIAM Journal on Computing 28:1136-1142. [OpenAIRE]

62 references, page 1 of 5
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue