# Fractional Euler Limits and their Applications

- Published: 10 Sep 2016

[1] L. Abadias and P. J. Miana, A subordination principle on wright functions and regularized resolvent families, Journal of Function Spaces, (2015).

[2] L. Altenberg, Resolvent positive linear operators exhibit the reduction phenomenon, Proceedings of the National Academy of Sciences, 109 (2012), pp. 3705{3710, doi:10.1073/pnas.1113833109. [OpenAIRE]

[3] C. N. Angstmann, I. C. Donnelly, and B. I. Henry, Pattern formation on networks with reactions: A continuous-time random-walk approach, Physical Review E, (2013).

[4] C. N. Angstmann, I. C. Donnelly, B. I. Henry, T. A. M. Langlands, and P. Straka, Generalized continuous time random walks, master equations, and fractional fokker{planck equations, SIAM Journal on Applied Mathematics, 75 (2015), pp. 1445{1468. [OpenAIRE]

[5] W. Arendt, C. Batty, M. Hieber, and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Birkhauser, 2011.

[6] B. Baeumer and M. M. Meerschaert, Stochastic solutions for fractional cauchy problems, Fractional Calculus and Applied Analysis, (2001).

[7] E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, PhD thesis, Technische Universiteit Eindhoven, 2001.

[8] B. P. Belinskiy and T. J. Kozubowski, Exponential mixture representation of geometric stable densities, Journal of Mathematical Analysis and Applications, 246 (2000), pp. 465{ 479. [OpenAIRE]

[9] Y. Berkowitz, Y. Edery, H. Scher, and B. Berkowitz, Fickian and non-Fickian di usion with bimolecular reactions, Phys. Rev. E, 87 (2013). [OpenAIRE]

[10] A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical sciences, vol. 9, Society for Industrial and Applied Mathematics, Philadelphia, 1994. [OpenAIRE]

[11] E. Blanc, S. Engblom, A. Hellander, and P. Lotstedt, Mesoscopic modeling of stochastic reaction-di usion kinetics in the subdi usive regime, Multiscale Modeling & Simulation, 14 (2016), pp. 668{707, doi:10.1137/15M1013110.

[12] S. Bochner, Harmonic Analysis and the Theory of Probability, Dover, 2005.

[13] K. Burrage and G. Lythe, Accurate stationary densities with partitioned numerical methods for stochastic di erential equations, SIAM Journal on Numerical Analysis, 47 (2009), pp. 1601{1618. [OpenAIRE]

[14] A. V. Chechkin, R. Gorenflo, and I. M. Sokolov, Fractional di usion in inhomogeneous media, Journal of Physics A: Mathematical and General, 38 (2005), p. L679. [OpenAIRE]

[15] B. Drawert, M. Trogdon, S. Toor, L. Petzold, and A. Hellander, Molns: A cloud platform for interactive, reproducible, and scalable spatial stochastic computational experiments in systems biology using pyurdme, SIAM Journal on Scienti c Computing, 38 (2016), pp. C179{C202, doi:10.1137/15M1014784. [OpenAIRE]