publication . Preprint . 2015

Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by TEM and EELS

Trenikhina, Y.; Romanenko, A.; Kwon, J.; Zuo, J. -M.; Zasadzinski, J. F.;
Open Access English
  • Published: 02 Mar 2015
Abstract
Nanoscale defect structure within the magnetic penetration depth of ~100nm is key to the performance limitations of niobium superconducting radio frequency (SRF) cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120C baking. Furthermore, we demonstrate that adding 800C hydrogen degassing followed by light buffered chemical polishing restore...
Subjects
free text keywords: Physics - Accelerator Physics, Condensed Matter - Materials Science
Download from
32 references, page 1 of 3

1H. Padamsee, RF Superconductivity: Volume II: Science, Technology and Applications (Wiley-VCH Verlag GmbH and Co., KGaA, Weinheim, 2009).

2H. S. Padamsee, Annual Review of Nuclear and Particle Science, 64, 175 (2014), http://dx.doi.org/10.1146/annurev-nucl-102313- 025612.

3A. Romanenko and A. Grassellino, Appl. Phys. Lett., 102, 252603 (2013).

4A. Grassellino, A. Romanenko, D. Sergatskov, O. Melnychuk, Y. Trenikhina, A. Crawford, A. Rowe, M. Wong, T. Khabiboulline, and F. Barkov, Supercond. Sci. Tech., 26, 102001 (2013).

5G. Ciovati, G. Myneni, F. Stevie, P. Maheshwari, and D. Gri s, Phys. Rev. ST Accel. Beams, 13, 022002 (2010).

6A. Romanenko, F. Barkov, L. D. Cooley, and A. Grassellino, Supercond. Sci. Tech., 26, 035003 (2013). [OpenAIRE]

7C. Z. Antoine, B. Aune, B. Bonin, J. Cavedon, M. Juillard, A. Godin, C. Henriot, P. Leconte, H. Safa, A. Veyssiere, A. Chevarier, and B. Roux, in Proceedings of the Fifth Workshop on RF Superconductivity, DESY, Hamburg, Germany (1991) pp. 616{634.

8T. Tajima, R. L. Edwards, F. L. Krawczyk, J. Liu, D. L. Schrage, A. H. Shapiro, J. R. Tesmer, C. J. Wetteland, and R. L. Geng, in Proceedings of the 11th Workshop on RF Superconductivity, THP19 (2003).

9A. Romanenko and L. V. Goncharova, Supercond. Sci. Tech., 24, 105017 (2011).

10A. Romanenko, A. Grassellino, F. Barkov, A. Suter, Z. Salman, and T. Prokscha, Appl. Phys. Lett., 104, 072601 (2014).

11A. Romanenko, C. J. Edwardson, P. G. Coleman, and P. J. Simpson, Appl. Phys. Lett., 102, 232601 (2013).

12C. Benvenuti, S. Calatroni, and V. Ruzinov, in Proceedings of the 10th Workshop on RF Superconductivity (Tsukuba, Japan, 2001) p. 441.

13M. Delheusy, A. Stierle, N. Kasper, R. P. Kurta, A. Vlad, H. Dosch, C. Antoine, A. Resta, E. Lundgren, and J. Andersen, Appl. Phys. Lett., 92, 101911 (2008).

14K.-H. Kim and J.-M. Zuo, Ultramicroscopy, 124, 71 (2013).

15J. Zuo and J. Tao, in Scanning Transmission Electron Microscopy Imaging and Analysis, edited by S. Pennycook and P. Nellist (Springer, New York, 2011) pp. 393{427.

32 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue