publication . Preprint . 2017

A state enumeration of the foil knot

Ramaharo, Franck; Rakotondrajao, Fanja;
Open Access English
  • Published: 11 Dec 2017
We split the crossings of the foil knot and enumerate the resulting states with a generating polynomial. Unexpectedly, the number of such states which consist of two components are given by the lazy caterer's sequence. This sequence describes the maximum number of planar regions that is obtained with a given number of straight lines. We then establish a bijection between this partition of the plane and the concerned foil splits sequence.
free text keywords: Mathematics - Combinatorics, 57M25, 52C30
Download from

[1] C. Adams, The Knot Book, W. H. Freeman and Company, 1994.

[2] S. Barr, Experiments in Topology, Thomas Y. Crowell Company, 1964.

[3] A. Crans, B. Mellor and S. Ganzell, The forbidden number of a knot, Kyungpook Mathematical Journal 55 (2015), 485{506.

[4] D. Denton and P. Doyle, Shadow movies not arising from knots, arXiv preprint, 2011,

[5] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett and A. Oceanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 239{ 246. [OpenAIRE]

[6] K. Gongopadhyay and R. Mishra, Knot Theory and Its Applications, American Mathematical Society, 2016.

[7] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

[8] J. L. Jacobsen and P. Zinn-Justin, Matrix models and the enumeration of alternating tangles, Markov Processes and Related Fields 9 (2003), 301{310.

[9] L. Kau man, Knots and Physics, World Scienti c Publishers, 1991.

[10] L. Kau man, New invariants in the theory of knots, Amer. Math. Monthly 95 (1988), 195{242.

[11] J. H. Przytycki, 3-coloring and other elementary invariants of knots, Banach Center Publications 95 (1998), 275{295.

[12] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at, 2017.

[13] J. Steiner, Einige gesetze ber die theilung der ebene und des raumes, J. Reine Angew. Math. 1 (1826), 349{364.

[14] A. Stoimenow, Tait's conjectures and odd crossing number amphichiral knots, Bull. Amer. Math. Soc. 45 (2008), 285{291. [OpenAIRE]

[15] P. G. Tait, On knots I, II, III, Scienti c Papers 1 (1898), 273{347.

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue