Model-based clustering in very high dimensions via adaptive projections

Preprint English OPEN
Taschler, Bernd; Dondelinger, Frank; Mukherjee, Sach;
  • Subject: Statistics - Machine Learning | Computer Science - Machine Learning

Mixture models are a standard approach to dealing with heterogeneous data with non-i.i.d. structure. However, when the dimension $p$ is large relative to sample size $n$ and where either or both of means and covariances/graphical models may differ between the latent gro... View more
  • References (12)
    12 references, page 1 of 2

    D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of Computer and System Sciences, 66(4):671-687, 2003. ISSN 00220000. doi:10.1016/S0022-0000(03)00025-4.

    K. Roeder and L. Wasserman. Practical bayesian density estimation using mixtures of normals. Journal of the American Statistical Association, 92(439):894-902, 9 1997. ISSN 1537274X. doi:10.1080/01621459.1997.10474044.

    L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery. mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8(1):289-317, 8 2016. ISSN 2073-4859. doi:10.1177/2167702614534210.

    N. St¨adler and S. Mukherjee. Penalized estimation in high-dimensional hidden Markov models with statespecific graphical models. The Annals of Applied Statistics, 7(4):2157-2179, 2013. doi:10.2307/23566458.

    N. St¨adler and S. Mukherjee. Two-sample testing in high dimensions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(1):225-246, 4 2017. ISSN 13697412. doi:10.1111/rssb.12173.

    N. St¨adler, F. Dondelinger, S. M. Hill, R. Akbani, Y. Lu, G. B. Mills, and S. Mukherjee. Molecular heterogeneity at the network level: High-dimensional testing, clustering and a TCGA case study. Bioinformatics, 33(18):2890-2896, 9 2017. ISSN 14602059. doi:10.1093/bioinformatics/btx322.

    R. Tibshirani and G. Walther. Cluster validation by prediction strength. Journal of Computational and Graphical Statistics, 14(3):511-528, 2005. ISSN 10618600. doi:10.1198/106186005X59243.

    D. Usoskin, A. Furlan, S. Islam, H. Abdo, P. Lo¨nnerberg, D. Lou, J. Hjerling-Leffler, J. Haeggstr¨om, O. Kharchenko, P. V. Kharchenko, S. Linnarsson, and P. Ernfors. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nature Neuroscience, 18(1):145-153, 2015. ISSN 15461726. doi:10.1038/nn.3881.

    U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(March):395-416, 2006. ISSN 09603174. doi:10.1007/s11222-007-9033-z.

    A. Zeisel, A. B. Munoz Manchado, S. Codeluppe, P. Lo¨nnerberg, G. La Manno, A. Jureus, S. Marques, H. Munguba, L. He, C. Betsholtz, C. Rolny, G. Castelo-Branco, J. Hjerling-Leffler, and S. Linnarsson. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 25:279-284, 2014.

  • Related Research Results (1)
    Inferred by OpenAIRE
    mcap software on GitHub
  • Related Organizations (1)
  • Metrics
Share - Bookmark