publication . Preprint . 2020

Frequency-resolved multifold fermions in the chiral topological semimetal CoSi

Xu, B.; Fang, Z.; Sánchez-Martínez, M. A.; Venderbos, J. W. F.; Ni, Z.; Qiu, T.; Manna, K.; Wang, K.; Paglione, J.; Bernhard, C.; ...
Open Access English
  • Published: 04 May 2020
We report the optical conductivity in the linear-response regime of the chiral topological semimetal CoSi, predicted to host elusive topological quasiparticles known as multifold fermions. We find that the optical response is separated into several distinct regions as a function of frequency, each dominated by different types of quasiparticles. The low-frequency response is captured by a narrow Drude peak that broadens strongly with increasing temperature from 10 K to 300 K and is dominated by a high-mobility electron pocket near a double Weyl fermion at the $R$ point. At high frequencies, we observe a sharp peak at 0.56 eV. Using tight-binding calculations, we ...
free text keywords: Condensed Matter - Materials Science, Condensed Matter - Mesoscale and Nanoscale Physics, Condensed Matter - Strongly Correlated Electrons
Funded by
EC| GreQuE
Grenoble Quantum Engineering Doctoral Programme
  • Funder: European Commission (EC)
  • Project Code: 754303
  • Funding stream: H2020 | MSCA-COFUND-DP
Topological Materials: New Fermions, Realization of Single Crystals and their Physical Properties
  • Funder: European Commission (EC)
  • Project Code: 742068
  • Funding stream: H2020 | ERC | ERC-ADG
Spatially-Separated Chirality Inspired Networks
  • Funder: European Commission (EC)
  • Project Code: 829044
  • Funding stream: H2020 | RIA
FET H2020FET OPEN: FET-Open Challenging Current Thinking
FET H2020FET OPEN: Spatially-Separated Chirality Inspired Networks
Download from
74 references, page 1 of 5

1 ) ° 0.75 m 1 c

[1] S. Murakami, New Journal of Physics 9, 356 (2007).

[2] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Physical Review B 83, 205101 (2011).

[3] A. Burkov and L. Balents, Physical review letters 107, 127205 (2011).

[4] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Physical Review X 5, 011029 (2015).

[5] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, et al., Nature Communications 6 (2015).

[6] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, et al., Science 349, 613 (2015).

[7] B. Lv, H. Weng, B. Fu, X. Wang, H. Miao, J. Ma, P. Richard, X. Huang, L. Zhao, G. Chen, et al., Physical Review X 5, 031013 (2015).

[8] B. Lv, N. Xu, H. Weng, J. Ma, P. Richard, X. Huang, L. Zhao, G. Chen, C. Matt, F. Bisti, et al., Nature Physics 11, 724 (2015).

[9] S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R. Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, et al., Nature Physics 11, 748 (2015).

[10] L. Yang, Z. Liu, Y. Sun, H. Peng, H. Yang, T. Zhang, B. Zhou, Y. Zhang, Y. Guo, M. Rahn, et al., Nature Physics 11, 728 (2015).

[11] N. Xu, H. Weng, B. Lv, C. E. Matt, J. Park, F. Bisti, V. N. Strocov, D. Gawryluk, E. Pomjakushina, K. Conder, et al., Nature communications 7, 11006 (2016).

[12] I. Belopolski, K. Manna, D. S. Sanchez, G. Chang, B. Ernst, J. Yin, S. S. Zhang, T. Cochran, N. Shumiya, H. Zheng, et al., Science 365, 1278 (2019).

[13] D. Liu, A. Liang, E. Liu, Q. Xu, Y. Li, C. Chen, D. Pei, W. Shi, S. Mo, P. Dudin, et al., Science 365, 1282 (2019).

[14] N. Morali, R. Batabyal, P. K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, and H. Beidenkopf, arXiv preprint arXiv:1903.00509 (2019).

74 references, page 1 of 5
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue