publication . Preprint . 2017

Transposes, L-Eigenvalues and Invariants of Third Order Tensors

Qi, Liqun;
Open Access English
  • Published: 05 Apr 2017
Third order tensors have wide applications in mechanics, physics and engineering. The most famous and useful third order tensor is the piezoelectric tensor, which plays a key role in the piezoelectric effect, first discovered by Curie brothers. On the other hand, the Levi-Civita tensor is famous in tensor calculus. In this paper, we study third order tensors and (third order) hypermatrices systematically, by regarding a third order tensor as a linear operator which transforms a second order tensor into a first order tensor, or a first order tensor into a second order tensor. For a third order tensor, we define its transpose, kernel tensor and L-eigenvalues. Here...
arXiv: Computer Science::Graphics
free text keywords: Mathematical Physics
Download from
24 references, page 1 of 2

[1] H. R. Brand, H. Pleiner, and P. E. Cladis, “Flow properties of the optically isotropic tetrahedratic phase”, Eur. Phys. J. E 7 (2002) 163-166.

[2] Y. Chen, A. Ja´kli and L. Qi, “Spectral analysis of piezoelectric tensors”, arXiv:1703.07937, 2017.

[3] Y. Chen, L. Qi, and E.G. Virga, “Octupolar tensors for liquid crystals”, arXiv:1701.06761, 2017.

[4] J. Curie and P. Curie, “D´eveloppement, par pression, de l'´electricit´e polaire dans les cristaux h´emi`edres `a faces inclin´ees”, Comptes rendus (in French) 91 (1880) 294-295.

[5] L. G. Fel, “Tetrahedral symmetry in nematic liquid crystals”, Physical Review E 52 (1995) 702-717. [OpenAIRE]

[6] G. Gaeta and E.G. Virga, “Octupolar order in three dimensions”, Eur. Phys. J. E 39 (2016) 113. [OpenAIRE]

[7] S. Haussu¨hl, Physical Properties of Crystals: An Introduction, Wiley-VCH Verlag, Weinheim, 2007.

[8] A. Ja´kli, “Electro-mechanical effects in liquid crystals”, Liquid Crystals 37 (2010) 825-837.

[9] A. Ja´kli, I.C. Pintre, J.L. Serrano, M.B. Ros and M.R. de la Fuente, “Piezoelectric and electric-field-induced properties of a ferroelectric bent-core liquid crstal”, Adv. Mater. 21 (2009) 3784-3788.

[10] A. Ja´kli, T. To´th-Katona, T. Scharf, M. Schadt and A. Saupe, “Piezolelectricity of a ferroelectric liquid crystal with a gltransition”, Phys. Rev. E 66 (2002) 011701.

[11] J. Jerphagnon, “Invariants of the third-rank Cartesian tensor: Optical nonlinear susceptibilities”, Phys. Rev. B 2 (1970) 1091. [OpenAIRE]

[12] A.L. Kholkin, N.A. Pertsev and A.V. Goltsev, “Piezolelectricity and crystal symmetry”, in: A. Safari and E.K. Akdog˜an, eds., Piezoelectric and Acoustic Materials, Springer, New York, 2008, pp. 17-38.

[13] I.A. Kulagin, R.A. Ganeev, R.I. Tugushev, A.I. Ryasnyansky and T. Usmanov, “Components of the third-order nonlinear susceptibility tensors in KDP, DKDP and LiNbO3 nonlinear optical crystals”, Quantum Electron. 34 (2004) 657. [OpenAIRE]

[14] L.P. Lebedev, M.J. Cloud and V.A. Ermeyev, Tensor Analysis with Applications in Mechanics, World Scientific, New Jersy, 2010.

[15] C. Li and Y. Li, “C-Eigenvalues intervals of Piezoelectric-type tensors”, Preprint, Yunnan University, April 2017.

24 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue