publication . Article . Preprint . 2019

Effective estimates on the top Lyapunov exponents for random matrix products

Jurga, Natalia; Morris, Ian;
Open Access English
  • Published: 26 Sep 2019
  • Publisher: IOP Publishing
  • Country: United Kingdom
Abstract
Comment: Updated definition of constant r, updated examples section, new section on scope for generalising results to higher dimensions, proof of lemma 2.1 corrected
Subjects
free text keywords: Mathematical Physics, General Physics and Astronomy, Applied Mathematics, Statistical and Nonlinear Physics, Quadrant (instrument), Matrix (mathematics), Mathematical analysis, Computation, Eigenvalues and eigenvectors, Operator (computer programming), Mathematics, Random matrix, Fredholm theory, symbols.namesake, symbols, Lyapunov exponent, Mathematics - Dynamical Systems
Related Organizations
16 references, page 1 of 2

[1] Birkhoff, G. (1957). Extensions of Jentzsch's theorem. Transactions of the American Mathematical Society, 85(1), 219-227. [OpenAIRE]

[2] Bandtlow, O. F. and Jenkinson, O. (2008). On the Ruelle eigenvalue sequence. Ergodic Theory and Dynamical Systems, 28(6), 1701-1711. [OpenAIRE]

[3] Simon, B. (2010). Trace ideals and their applications (No. 120). American Mathematical Soc.

[4] Furstenberg, H., and Kesten, H. (1960). Products of random matrices. The Annals of Mathematical Statistics, 31(2), 457-469.

[5] Gohberg, I., Goldberg, S., and Kaashoek, M. A. (2013). Classes of linear operators I (Vol. 63). Birkh¨auser. [OpenAIRE]

[6] Gohberg, I., Goldberg, S., and Krupnik, N. (2012). Traces and determinants of linear operators (Vol. 116). Birkh¨auser.

[7] Hennion, H. and Herv´e, L. (2001). Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness (Vol. 1766). Springer Science and Business Media.

[8] Jenkinson, O., Pollicott, M., and Vytnova, P. (2018). Rigorous computation of diffusion coefficients for expanding maps. Journal of Statistical Physics, 170(2), 221-253.

[9] Kato, T. (2013). Perturbation theory for linear operators (Vol. 132). Springer Science and Business Media.

[10] Morris, I. D. (2018). Fast approximation of the affinity dimension for dominated affine iterated function systems. arXiv preprint arXiv:1807.09084.

[11] Peres, Y. (1992). Domains of analytic continuation for the top Lyapunov exponent. Ann. Inst. H. Poincar´e Probab. Statist, 28(1), 131-148.

[12] Pollicott, M. (2010). Maximal Lyapunov exponents for random matrix products. Inventiones mathematicae, 181(1), 209-226. [OpenAIRE]

[13] Jenkinson, O., and Pollicott, M. (2001). Computing the dimension of dynamically defined sets: E2 and bounded continued fractions. Ergodic Theory and Dynamical Systems, 21(5), 1429-1445.

[14] Pollicott, M., and Vytnova, P. (2015, March). Estimating singularity dimension. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 158, No. 2, pp. 223-238). Cambridge University Press. [OpenAIRE]

[15] Ruelle, D. (1976). Zeta-functions for expanding maps and Anosov flows. Inventiones mathematicae, 34(3), 231-242. [OpenAIRE]

16 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2019

Effective estimates on the top Lyapunov exponents for random matrix products

Jurga, Natalia; Morris, Ian;