publication . Article . Preprint . 2012

BANNAI-ITO POLYNOMIALS AND DRESSING CHAINS

Derevyagin, Maxim; Tsujimoto, Satoshi; Vinet, Luc; Zhedanov, Alexei;
Open Access
  • Published: 08 Nov 2012 Journal: Proceedings of the American Mathematical Society, volume 142, pages 4,191-4,206 (issn: 0002-9939, eissn: 1088-6826, Copyright policy)
  • Publisher: American Mathematical Society (AMS)
Abstract
Comment: 15 pages; Section 2 is slightly modified and a few typos are corrected
Subjects
arXiv: Mathematics::CombinatoricsComputer Science::Computational GeometryNuclear TheoryMathematics::Probability
free text keywords: Mathematical Physics, Mathematics - Classical Analysis and ODEs, Mathematics - Rings and Algebras, 42C05 (Primary) 17B80, 33C45, 47B36 (Secondary)
38 references, page 1 of 3

[1] F.V. Atkinson, Multiparameter Eigenvalue Problems, Academic Press, New York (1972).

[2] E. Bannai, T. Ito, Algebraic combinatorics. I. The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, (1984).

[3] W. Bryc, W. Matysiak, J. Wesolowski, Quadratic harnesses, q-commutations, and orthogonal martingale polynomials, Trans. Amer. Math. Soc. 359 (2007), no. 11, 5449-5483. [OpenAIRE]

[4] W. Bryc, J. Wesolowski, Askey-Wilson polynomials, quadratic harnesses and martingales, Ann. Probab. 38 (2010), no. 3, 1221-1262.

[5] M.I. Bueno and F. Marcell´an, Darboux transformation and perturbation of linear functionals, Lin. Alg. Appl. 384 (2004), 215-242.

[6] T. Chihara, On kernel polynomials and related systems, Boll. Unione Mat. Ital., 3 Ser., 19 (1964), 451-459.

[7] S. Corteel, R. Stanley, D. Stanton and L. Williams, Formulae for Askey-Wilson moments and enumeration of staircase tableaux, Trans. Amer. Math. Soc. 364 (2012), 6009-6037. [OpenAIRE]

[8] P. Delsarte and Y. Genin, The split Levinson algorithm, IEEE Trans. Acoust. Speech Signal Process. 34 (1986), 470-478.

[9] M. Derevyagin, Generalized Jacobi operators in Krein spaces, J. Math. Annal. Appl. Vol. 349 (2009), 568-582.

[10] M. Derevyagin, V. Derkach, Darboux transformations of Jacobi matrices and Pad´e approximation, Linear Algebra Appl. 435, no. 12 (2011), 3056-3084.

[11] M. Derevyagin, L. Vinet, and A. Zhedanov, CMV matrices and Little and Big -1 Jacobi polynomials, to appear in Constr. Approx.

[12] M.S. Derevyagin, A.S. Zhedanov, An operator approach to multipoint Pad´e approximations, J. Approx. Theory 157 (2009) 70-88. [OpenAIRE]

[13] F. Essler and V. Rittenberg, Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries. J. Phys. A 29 (1996), 3375-3407. [OpenAIRE]

[14] G. Gladwell, Inverse problems in vibration. Second edition. Solid Mechanics and its Applications, 119. Kluwer Academic Publishers, Dordrecht, 2004.

[15] F.A. Gru¨nbaum, L. Haine, Orthogonal polynomials satisfying differential equations: the role of the Darboux transformation. Symmetries and integrability of difference equations (Esterel, PQ, 1994), 143-154, CRM Proc. Lecture Notes, 9, Amer. Math. Soc., Providence, RI, 1996.

38 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue