Series expansion in fractional calculus and fractional differential equations

Preprint English OPEN
Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao;
  • Subject: Mathematical Physics

Fractional calculus is the calculus of differentiation and integration of non-integer orders. In a recently paper (Annals of Physics 323 (2008) 2756-2778), the Fundamental Theorem of Fractional Calculus is highlighted. Based on this theorem, in this paper we introduce f... View more
  • References (21)
    21 references, page 1 of 3

    [1] K. B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974.

    [2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.

    [3] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

    [4] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Application of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

    [6] A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, 1997.

    [7] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

    [8] B. West, M. Bologna, P. Grigolini, Physics of Fractal Operators, Springer, New York, 2003.

    [9] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, 2005.

    [10] R. Metzler, J. Klafter, Phys. Rep. 339 (2000) 1-77; R. Metzler, J. Klafter, J. Phys. A 37 (2004) R161-R208.

  • Related Organizations (2)
  • Metrics
Share - Bookmark