publication . Preprint . 2016

An existence proof of a symmetric periodic orbit in the octahedral six-body problem

Cavalcanti, Anete Soares;
Open Access English
  • Published: 12 May 2016
We present a proof of the existence of a periodic orbit for the Newtonian six-body problem with equal masses. This orbit has three double collisions each period and no multiple collisions. Our proof is based on the minimization of the Lagrangian action functional on a well chosen class of symmetric loops.
free text keywords: Mathematics - Dynamical Systems
Download from

[1] Brezis, H. , Analyse fonctionnelle, Theorie et applications, Dunod, Paris, 1999.

[2] Chen, K-C., Variational Methods and Periodic Solutions of Newtonian N-Body Problems, Ph.D thesis, University of Minnesota, 2001.

[3] Chenciner, A., Montgomery, R., A Remarkable Periodic Solution of the Three-Body Problem in the Case of Equal Mass, Annals of Mathematics 152, 2000, p. 881-901. [OpenAIRE]

[4] Coti-Zelati, Z., Periodic Solution for N -Body Problems, Ann. Inst. Henri Poincare, Anal Non Lineaire 7, number 5, 1990, p. 477-492.

[5] Degiovanni, M., Gianonni, F. and Marino, A., Periodic Solutions of Dynamical Systems with Newtonian Type Potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15, 1988, p. 467-494.

[6] Gordon, W. B., A Minimizing Property of Kleperian Orbits, Amarican Journal of Math, 99 (1997), 961-971.

[7] Levi-Civita, T. Sur la Regularization du probleme des trois corps, Acta. Math, 42 (1920), 99-144. [OpenAIRE]

[8] Palais, R. , The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), 19-30.

[9] Poincare, H. Sur Les Solutions Periodiques et le Principe de Moindre Action, C.R.A.S., 1896.

[10] Serra, E. and Terracini, S. Collisionless Periodic Solutions to Some Three-Body Problems, Arch. Rational Mech. Anal. 120, 1992, p. 305-325.

[11] Shibayama, M., Minimizing Periodic Orbits with Regularizable Collisions in the n- Body Problem, Arch. Rational Mech. Anal. 199, 2011, p. 821-841.

[12] Schubart, J., Numerische Aufsuchung periodischer Losungen im Dreikorperproblem, Astronom. Nachr. 283 (1956), 17-22.

[13] Venturelli, A. A Variational proof of the existence of Von Schubart's Orbits, Discrete and Continuous Dynamical Systems B 10, 2008, p. 699-717.

[14] Venturelli, A. Application de la minimisation de l'action au Probleme des N corps dans le plan et dans l'espace, Ph.D thesis, Universite Denis Diderot in Paris, 2002.

[15] Young, L.C., Lectures on the Calculus of Variations and Optimal Control Theory, W.B. Saunders Company, 1969. 1Universidade Federal Rural de Pernambuco, Depto de Matematica, Rua Dom Manoel de Medeiros, sn, Recife, PE, 52171-900, Brasil, Phone: 55 81 3320-6486., CAPES' scholarship E-mail address:;

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue