publication . Preprint . 2018

Weaving Hilbert space fusion frames

Neyshaburi, Fahimeh Arabyani; Arefijamaal, Ali Akbar;
Open Access English
  • Published: 09 Feb 2018
A new notion in frame theory, so called weaving frames has been recently introduced to deal with some problems in signal processing and wireless sensor networks. Also, fusion frames are an important extension of frames, used in many areas especially for wireless sensor networks. In this paper, we survey the notion of weaving Hilbert space fusion frames. This concept can be had potential applications in wireless sensor networks which require distributed processing using different fusion frames. Indeed, we present several approaches for identifying and constructing of weaving fusion frames in terms of local frames, bounded operators in Hilbert spaces and also dual...
arXiv: Physics::Plasma Physics
ACM Computing Classification System: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
free text keywords: Mathematics - Functional Analysis
Download from
20 references, page 1 of 2

1. Antezana, J., Corach, G., Stojanoff, D. and Ruiz, M., Weighted projections and Riesz frames, Lin. Alg. Appl. 402, 367-389, 2005.

2. Arefijamaal, A. and Arabyani Neyshaburi, F., Some properties of dual and approximate dual of fusion frames, Turkish J. Math. 41, 1191-1203, 2017. [OpenAIRE]

3. Asgari, M. S., New characterizations of fusion frames (frames of subspaces), Proc. Indian Acad. Sci. Math. Sci . 119(3), 369-382, 2009. [OpenAIRE]

4. Asgari, M. S., On the Riesz fusion bases in Hilbert spaces, J. Egyption Math. Soc. 21(2), 79-86, 2013.

5. Bemrose, T., Casazza, P. G., Grochenig., Lammers, M. C. and Lynch, R. G. Weaving Hilbert space frames, Operators and Matrices. 10(4), 1093-1116, 2016.

6. Casazza, P. G. and Kutyniok, G. frames of subspaces, Contemp. Math. 345, 87-114, 2004.

7. Casazza, P. G., Kutyniok, G. and Li, S. Fusion frames and distributed processing, Appl. Comput. Harmon. Anal. 25 (1), 114-132, 2008. [OpenAIRE]

8. Casazza, P. G., Lynch, R. G., Weaving properties of Hilbert space frames, In: Proceedings of the SampTA. 110-114, 2015. [OpenAIRE]

9. Christensen, O. frames and Bases: An Introductory Course, Birkh¨auser, Boston. 2008.

10. Deepshikha., Vashisht, L. K., Verma, G., Generalized weaving frames for operators in Hilbert spaces, Result. Math. to appear.

11. Deepshikha., Garg, S., Vashisht, L. K., Verma, G., On weaving fusion frames for Hilbert spaces, Proc. SampTA., 381-385, 2017.

12. Ding, J., On the perturbation of the reduced minimum modulus of bounded linear operators, Appl. math. Comput, 140, 69-75, 2003.

13. G˘avru¸ta, P. On the duality of fusion frames, J. Math. Anal. Appl. 333 (2), 871-879, 2007.

14. Heineken, S. B., Morillas, P. M., Properties of finite dual fusion frames, Linear Algebra Appl. 453 (2014), 1-27. [OpenAIRE]

15. Heineken, S. B., Morillas, P. M., Benavente, A. M., and Zakowicz, M. I., Dual fusion frames, Arch. Math. 103 (2014), 355-365. [OpenAIRE]

20 references, page 1 of 2
Any information missing or wrong?Report an Issue