Weaving Hilbert space fusion frames
- Published: 09 Feb 2018
- 1
- 2
1. Antezana, J., Corach, G., Stojanoff, D. and Ruiz, M., Weighted projections and Riesz frames, Lin. Alg. Appl. 402, 367-389, 2005.
2. Arefijamaal, A. and Arabyani Neyshaburi, F., Some properties of dual and approximate dual of fusion frames, Turkish J. Math. 41, 1191-1203, 2017. [OpenAIRE]
3. Asgari, M. S., New characterizations of fusion frames (frames of subspaces), Proc. Indian Acad. Sci. Math. Sci . 119(3), 369-382, 2009. [OpenAIRE]
4. Asgari, M. S., On the Riesz fusion bases in Hilbert spaces, J. Egyption Math. Soc. 21(2), 79-86, 2013.
5. Bemrose, T., Casazza, P. G., Grochenig., Lammers, M. C. and Lynch, R. G. Weaving Hilbert space frames, Operators and Matrices. 10(4), 1093-1116, 2016.
6. Casazza, P. G. and Kutyniok, G. frames of subspaces, Contemp. Math. 345, 87-114, 2004.
7. Casazza, P. G., Kutyniok, G. and Li, S. Fusion frames and distributed processing, Appl. Comput. Harmon. Anal. 25 (1), 114-132, 2008. [OpenAIRE]
8. Casazza, P. G., Lynch, R. G., Weaving properties of Hilbert space frames, In: Proceedings of the SampTA. 110-114, 2015. [OpenAIRE]
9. Christensen, O. frames and Bases: An Introductory Course, Birkh¨auser, Boston. 2008.
10. Deepshikha., Vashisht, L. K., Verma, G., Generalized weaving frames for operators in Hilbert spaces, Result. Math. to appear.
11. Deepshikha., Garg, S., Vashisht, L. K., Verma, G., On weaving fusion frames for Hilbert spaces, Proc. SampTA., 381-385, 2017.
12. Ding, J., On the perturbation of the reduced minimum modulus of bounded linear operators, Appl. math. Comput, 140, 69-75, 2003.
13. G˘avru¸ta, P. On the duality of fusion frames, J. Math. Anal. Appl. 333 (2), 871-879, 2007.
14. Heineken, S. B., Morillas, P. M., Properties of finite dual fusion frames, Linear Algebra Appl. 453 (2014), 1-27. [OpenAIRE]
15. Heineken, S. B., Morillas, P. M., Benavente, A. M., and Zakowicz, M. I., Dual fusion frames, Arch. Math. 103 (2014), 355-365. [OpenAIRE]
- 1
- 2