publication . Article . Preprint . 1997

Computing the spectrum of black hole radiation in the presence of high frequency dispersion: An analytical approach

Steven Corley;
Open Access
  • Published: 08 Oct 1997 Journal: Physical Review D, volume 57, pages 6,280-6,291 (issn: 0556-2821, eissn: 1089-4918, Copyright policy)
  • Publisher: American Physical Society (APS)
We present a method for computing the spectrum of black hole radiation of a scalar field satisfying a wave equation with high frequency dispersion. The method involves a combination of Laplace transform and WKB techniques for finding approximate solutions to ordinary differential equations. The modified wave equation is obtained by adding a higher order derivative term suppressed by powers of a fundamental momentum scale $k_0$ to the ordinary wave equation. Depending on the sign of this new term, high frequency modes propagate either superluminally or subluminally. We show that the resulting spectrum of created particles is thermal at the Hawking temperature, an...
Persistent Identifiers
free text keywords: High Energy Physics - Theory, General Relativity and Quantum Cosmology, Physics, Wave equation, Hawking radiation, Quantum electrodynamics, Laplace transform, Ordinary differential equation, Scalar field, Dispersion relation, Black hole, WKB approximation, Quantum mechanics
18 references, page 1 of 2

[1] S.W. Hawking, Nature (London) 248 (1974) 30; Commun. Math. Phys. 43 (1975) 199.

[2] J. B. Hartle and S. W. Hawking, Phys. Rev. D13 (1976) 2188.

[3] W. G. Unruh, Phys. Rev. D14 (1976) 870.

[4] K. Fredenhagen and R. Haag, Commun. Math. Phys. 127 (1990) 273.

[5] W.G. Unruh, Phys. Rev. D 51 (1995) 2827.

[6] R. Brout, S. Massar, R. Parentani and Ph. Spindel, Phys. Rev. D 52 (1995) 4559.

[7] T. Jacobson, Phys. Rev. D 53 (1996) 7082.

[8] S. Corley and T. Jacobson, Phys. Rev. D 54 (1996) 1568.

[9] R. M. Wald, Commun. Math. Phys. 45 (1975) 9.

[10] W. G. Unruh, personal communication.

[11] S. Corley and T. Jacobson, work in progress.

[12] G. T. Horowitz and D. Marolf, Phys. Rev. D 52 (1995) 5670.

[13] T. Jacobson, “Semiclassical Decay of Near-Extremal Black Holes”, UMDGR-97-110 [hep-th/9705017].

[14] L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968).

[15] N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals (Holt, Rinehart and Winston, New York, 1975).

18 references, page 1 of 2
Any information missing or wrong?Report an Issue