## Hamiltonian unknottedness of certain monotone Lagrangian tori in $S^2\times S^2$

*Cieliebak, Kai*;

*Schwingenheuer, Martin*;

Related identifiers: doi: 10.2140/pjm.2019.299.427 - Subject: Mathematics - Symplectic Geometry | 53D12arxiv: Mathematics::Geometric Topology | Mathematics::Symplectic Geometry

- References (9)
[1] P. Albers and U. Frauenfelder, A non-displaceable Lagrangian torus in T ∗S2, Comm. Pure Appl. Math. 61, 1046-1051 (2008).

[9] A. Gadbled, On exotic monotone Lagrangian tori in CP 2 and S2×S2, J. Symp. Geom. 11, no. 3, 343-361 (2013).

[10] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. math. 82, 307-347 (1985).

[11] R. Hind, Lagrangian spheres in S2 × S2, Geom. Funct. Analysis (2) 14, 303-318 (2004).

[12] R. Hind, Lagrangian unknottedness in Stein surfaces, Asian J. Math. 16, no. 1, 1-36 (2012).

[14] F. Lalonde and D. McDuff, The classification of ruled symplectic 4- manifolds, Math. Res. Letters 3, 769-778 (1996).

[15] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Oxford University Press, 2nd edition (2005).

[16] J. Oakley and M. Usher, On Certain Lagrangian Submanifolds of S2 × S2 and CP n, arXiv:1311.5152.

[17] S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10, 621-626 (1959).

- Similar Research Results (12) 12 research results, page 1 of 2
- 1
- 2

- Metrics No metrics available

- Download from

- Cite this publication