18 references, page 1 of 2
Gretton, A., Borgwardt, K., Rasch, M., Schoelkopf, B., and Smola, A. A kernel two-sample test. Journal of Machine Learning Research, 13:723{773, 2012. [OpenAIRE]
Hotelling, Harold. The generalization of student's ratio. Annals of Mathematical Statistics, 2(3): 360{378, aug 1931. doi: 10.1214/aoms/1177732979. URL http://dx.doi.org/10.1214/aoms/ 1177732979. [OpenAIRE]
Kariya, Takeaki. A robustness property of hotelling's t2-test. The Annals of Statistics, pp. 211{214, 1981. [OpenAIRE]
Lehmann, Erich L and Romano, Joseph P. Testing statistical hypotheses. springer, 2006.
Lopes, M.E., Jacob, L., and Wainwright, M.J. A more powerful two-sample test in high dimensions using random projection. In Advances in Neural Information Processing Systems 24. MIT Press, 2011.
Lyons, R. Distance covariance in metric spaces. Annals of Probability, 41(5):3284{3305, 2013.
Reddi, Sashank J., Ramdas, Aaditya, Poczos, Barnabas, Singh, Aarti, and Wasserman, Larry A. Kernel MMD, the median heuristic and distance correlation in high dimensions. CoRR, abs/1406.2083, 2014. URL http://arxiv.org/abs/1406.2083.
Rosenbaum, Paul R. An exact distribution-free test comparing two multivariate distributions based on adjacency. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(4): 515{530, 2005.
Salaevskii, O.V. Minimax character of hotellings t2 test. i. In Investigations in Classical Problems of Probability Theory and Mathematical Statistics, pp. 74{101. Springer, 1971.
Scholkopf, Bernhard and Smola, A. J. Learning with Kernels. MIT Press, Cambridge, MA, 2002.
Sejdinovic, D., Sriperumbudur, B., Gretton, A., Fukumizu, K., et al. Equivalence of distance-based and RKHS-based statistics in hypothesis testing. The Annals of Statistics, 41(5):2263{2291, 2013. [OpenAIRE]
Ser ing, Robert J. Approximation theorems of mathematical statistics, volume 162. John Wiley & Sons, 2009.
Simaika, JB. On an optimum property of two important statistical tests. Biometrika, pp. 70{80, 1941.
Srivastava, Muni S. and Du, Meng. A test for the mean vector with fewer observations than the dimension. Journal of Multivariate Analysis, 99(3):386{402, mar 2008. doi: 10.1016/j.jmva.2006. 11.002. URL http://dx.doi.org/10.1016/j.jmva.2006.11.002. [OpenAIRE]
Szekely, Gabor J and Rizzo, Maria L. Testing for equal distributions in high dimension. InterStat, 5, 2004.
18 references, page 1 of 2