## A recursive algorithm for trees and forests

*Guo, Song*;

*Guo, Victor J. W.*;

Related identifiers: doi: 10.1016/j.disc.2016.12.012 - Subject: Mathematics - Combinatorics | 05C05, 05A15, 05A19

- References (15) 15 references, page 1 of 2
- 1
- 2

[1] M. Aigner and G.M. Ziegler, Proofs from The Book, Fourth Ed., SpringerVerlag, Berlin, 2010.

[2] T.L. Austin, The enumeration of point labelled chromatic graphs and trees, Canad. J. Math. 12 (1960), 535-545.

[3] A. Cayley, A theorem on trees, Quart. J. Math. 23 (1889), 376-378.

[4] W.Y.C. Chen, A general bijective algorithm for trees, Proc. Natl. Acad. Sci. USA 87 (1990), 9635-9639.

[5] W.Y.C. Chen and V.J.W. Guo, Bijections behind the Ramanujan polynomials, Adv. Appl. Math. (2001), 336-356.

[6] W.Y.C. Chen and J.F.F Peng, Disposition polynomials and plane trees, European J. Combin. 36 (2014), 122-129.

[7] L.E. Clarke, On Cayley's formula for counting trees, J. London Math. Soc. 33 (1958), 26-28.

[8] R.R.X. Du and J. Yin, Counting labelled trees with given indegree sequence, J. Combin. Theory Ser. A 117 (2010), 345-353.

[9] O. Egˇecioˇglu and J.B. Remmel, Bijections for Cayley trees, spanning trees, and their q-analogues, J. Combin. Theory Ser. A 42 (1986), 15-30.

[10] O. Egˇecioˇglu and J.B. Remmel, A bijection for spanning trees of complete multipartite graphs, Congr. Numer. 100 (1994), 225-243.

- Metrics No metrics available

- Download from

- Cite this publication