publication . Preprint . 1996

The KZB equations on Riemann surfaces

Felder, Giovanni;
Open Access English
  • Published: 18 Sep 1996
Comment: 29 pages, LaTeX, to appear in the Proceedings of the 1995 les Houches Summer School
free text keywords: High Energy Physics - Theory
Related Organizations
Funded by
NSF| Mathematical Sciences: Research on Conformal Field Theory
  • Funder: National Science Foundation (NSF)
  • Project Code: 9400841
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences
Download from
37 references, page 1 of 3

Corollary 5.4. For each z1, . . . , zn, the differential operators n Hi = X ων(zi, λ)(i) ∂ ν=1 ∂λν

[1] E. Arbarello, C. de Concini, V. G. Kac and C. Procesi, Moduli spaces of curves and representation theory, Commun. Math. Phys. 117 (1988), 1-36 [OpenAIRE]

[2] A. Beauville and Y. Laszlo, Conformal blocks and generalized theta functions, Commun. Math. Phys. 164 (1994), 335-340 [OpenAIRE]

[3] D. Bernard, On the Wess-Zumino-Witten model on the torus, Nucl. Phys. B303 (1988), 77-93

[4] D. Bernard, On the Wess-Zumino-Witten model on Riemann surfaces, Nucl. Phys. B309 (1988), 145-174

[5] D. Bernard and G. Felder, Fock representations and BRST cohomology in SL(2) current algebra, Commun. Math. Phys. 127 (1990), 145-168

[6] I. Cherednik, Integral solutions of trigonometric Knizhnik-Zamolodchikov equations and Kac-Moody algebras, Publ. RIMS 27 (1991), 727-744

[7] T. Eguchi and H. Ooguri, Conformal and current algebras on a general Riemann surface, Nucl. Phys. B187 (1987) 127-134 [OpenAIRE]

[8] B. Enriquez and G. Felder, in preparation

[9] B. Enriquez and V. Rubtsov, Hitchin systems, higher Gaudin operators and R-matrices, Math. Res. Lett. 3 (1996), 343-357

[10] P. Etingof, I. Frenkel and A. Kirillov, Jr., Spherical functions on affine Lie groups, Duke Math. J. 80 (1995), 59-90 [OpenAIRE]

[11] L. D. Faddeev, L. A. Takhtajan, Hamiltonian methods in the theory of solitons, Springer, 1987

[12] F. Falceto and K. Gawe¸dzki, Chern-Simons states at genus one, Commun. Math. Phys. 159 (1994), 549-579

[13] G. Faltings, A proof for the Verlinde formula, J. Alg. Geom. 3(1994), 347-374

[14] G. Felder, Conformal field theory and integrable systems associated to elliptic curves, Proceedings of the International Congress of Mathematicians (Zu¨rich 1994), p. 1247-1255, Birkh¨auser, 1994

37 references, page 1 of 3
Any information missing or wrong?Report an Issue