publication . Preprint . Article . 2013

Membrane-less hydrogen bromine flow battery.

William A. Braff; Martin Z. Bazant; Cullen R. Buie;
  • Published: 16 Aug 2013
Abstract
In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for reducing stack cost is to increase the system power density while maintaining efficiency, enabling smaller stacks. Here we report on a membrane-less, hydrogen bromine laminar flow battery as a potential high power density solution. The membrane-less design enables power densities of 0.795 W cm$^{-2}$ at room temperature and atmospheric pressure, with a round-trip voltage efficiency of 92\% at 25\% of peak power. Theoretical solutions are also pres...
Subjects
free text keywords: Physics - Chemical Physics, Physics - Fluid Dynamics, General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry, Membrane, Hydrogen, chemistry.chemical_element, chemistry, Flow battery, Laminar flow, Bromine, Molecular biology, Electrochemistry, Chemical engineering, Battery (electricity), Biology
44 references, page 1 of 3

[1] Yang, Z. et al. Electrochemical Energy Storage for Green Grid. Chem. Rev. 111, 3577{3613 (2011).

[2] Rugolo, J. & Aziz, M. J. Electricity storage for intermittent renewable sources. Energy Environ. Sci. 5, 7151{7160 (2012).

[3] Soloveichik, G. L. Battery Technologies for Large-Scale Stationary Energy Storage. Annu. Rev. Chem. Biomol. Eng. 2, 503{527 (2011). [OpenAIRE]

[4] Hittinger, E., Whitacre, J. F. & Apt, J. What properties of grid energy storage are most valuable? J. Power Sources 206, 436{449 (2012). [OpenAIRE]

[5] Weber, A. Z. et al. Redox ow batteries: a review. J. Appl. Electrochem. 41, 1137{1164 (2011).

[6] Ponce de Leon, C., Fr as-Ferrer, A., Gonzalez-Garc a, J., Szanto, D. A. & Walsh, F. C. Redox ow cells for energy conversion. J. Power Sources 160, 716{732 (2006).

[7] Knehr, K. W., Agar, E., Dennison, C. R., Kalidindi, A. R. & Kumbur, E. C. A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport through the Membrane. J. Electrochem. Soc. 159, A1446{A1459 (2012). [OpenAIRE]

[8] Liu, Q. et al. Non-aqueous chromium acetylacetonate electrolyte for redox ow batteries. Electrochem. Commun. 12, 1634{1637 (2010).

[9] Duduta, M. et al. Semi-Solid Lithium Rechargeable Flow Battery. Adv. Energy Mater. 1, 511{516 (2011). [OpenAIRE]

[10] Skyllas-Kazacos, M., Kasherman, D., Hong, D. R. & Kazacos, M. Characteristics and Performance of 1-kW UNSW Vanadium Redox Battery. J. Power Sources 35, 399{404 (1991).

[11] Wang, W. et al. A New Fe/V Redox Flow Battery Using a Sulfuric/Chloric Mixed-Acid Supporting Electrolyte. Adv. Energy Mater. 2, 487{493 (2012).

[12] Kosek, J. A. & LaConti, A. B. Advanced Hydrogen Electrode for a Hydrogen Bromine Battery. J. Power Sources 22, 293{300 (1988).

[13] Yeo, R. S. & Chin, D.-T. Hydrogen-Bromine Cell for Energy-Storage Applications. J. Electrochem. Soc. 127, 549{555 (1980).

[14] Livshits, V., Ulus, A. & Peled, E. High-power H2/Br2 fuel cell. Electrochem. Commun. 8, 1358{1362 (2006).

[15] Kreutzer, H., Yarlagadda, V. & Nguyen, T. V. Performance Evaluation of a Regenerative HydrogenBromine Fuel Cell. J. Electrochem. Soc. 159, F331{F337 (2012). [OpenAIRE]

44 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Article . 2013

Membrane-less hydrogen bromine flow battery.

William A. Braff; Martin Z. Bazant; Cullen R. Buie;