Reciprocity Laws for the Higher Tame Symbol and the Witt Symbol on an Algebraic Surface

Preprint English OPEN
Syder, Kirsty;
(2013)
  • Subject: Mathematics - Number Theory
    arxiv: Mathematics::K-Theory and Homology | Computer Science::Symbolic Computation

Parshin's higher Witt pairing on an arithmetic surface can be combined with the higher tame pairing to form a symbol taking values in the absolute abelian Galois group of the function field. We prove reciprocity laws for this symbol using techniques of Morrow for the Wi... View more
  • References (30)
    30 references, page 1 of 3

    [1] N. Bourbaki. Commutative Algebra. Springer, 1998.

    [2] I. Cohen. On the structure and ideal theory of complete local rings. Trans. Amer. Math. Soc., 59:54-106, 1946.

    [3] I. Fesenko. Class field theory of multidimensional local fields of characteristic 0, with the residue field of positive characteristic. St. Petersburg Math. J., 3:649-678, 1992.

    [4] I. Fesenko. Multidimensional local class field theory ii. St. Petersburg Math. J., 3:1103-1126, 1992.

    [5] I. Fesenko. Sequential topologies and quotients of Milnor K-groups of higher local fields. St. Petersburg Math. J., 13:485-501, 2002.

    [6] I. Fesenko. Analysis on arithmetic schemes ii. J. K-theory 5, pages 437 - 557, 2010.

    [7] I. Fesenko and M. Kurihara, editors. Invitation to Higher Local Fields. Geometry and Topology Monographs 3, 2000.

    [8] I. Fesenko and S.V. Vostokov. Local Fields and Their Extensions. American Mathematical Society, 2 edition, 2002.

    [9] I. B. Fesenko and S.V. Vostokov. On torsion in higher Milnor functors for multi-dimensional fields. In Koltsai moduli, St Petersburg University Press, vyp. 1:75-87, English transl. in Amer. Math. Soc. Transl. (2) 154(1992), 25-35 1986.

    [10] R. Hartshorne. Algebraic Geometry. Springer, 1977.

  • Metrics
Share - Bookmark