publication . Preprint . 2013

Reciprocity Laws for the Higher Tame Symbol and the Witt Symbol on an Algebraic Surface

Syder, Kirsty;
Open Access English
  • Published: 23 Apr 2013
Comment: 19 pages
arXiv: Mathematics::K-Theory and HomologyComputer Science::Symbolic Computation
free text keywords: Mathematics - Number Theory
Download from
30 references, page 1 of 2

[1] N. Bourbaki. Commutative Algebra. Springer, 1998.

[2] I. Cohen. On the structure and ideal theory of complete local rings. Trans. Amer. Math. Soc., 59:54-106, 1946. [OpenAIRE]

[3] I. Fesenko. Class field theory of multidimensional local fields of characteristic 0, with the residue field of positive characteristic. St. Petersburg Math. J., 3:649-678, 1992.

[4] I. Fesenko. Multidimensional local class field theory ii. St. Petersburg Math. J., 3:1103-1126, 1992.

[5] I. Fesenko. Sequential topologies and quotients of Milnor K-groups of higher local fields. St. Petersburg Math. J., 13:485-501, 2002.

[6] I. Fesenko. Analysis on arithmetic schemes ii. J. K-theory 5, pages 437 - 557, 2010. [OpenAIRE]

[7] I. Fesenko and M. Kurihara, editors. Invitation to Higher Local Fields. Geometry and Topology Monographs 3, 2000.

[8] I. Fesenko and S.V. Vostokov. Local Fields and Their Extensions. American Mathematical Society, 2 edition, 2002.

[9] I. B. Fesenko and S.V. Vostokov. On torsion in higher Milnor functors for multi-dimensional fields. In Koltsai moduli, St Petersburg University Press, vyp. 1:75-87, English transl. in Amer. Math. Soc. Transl. (2) 154(1992), 25-35 1986. [OpenAIRE]

[10] R. Hartshorne. Algebraic Geometry. Springer, 1977.

[11] K. Kato. A generalization of local class field theory by using K-groups I. J. Fac. Sci. Univ. Tokyo Sect. 1A, pages 303-376, 1979.

[12] K. Kato. A generalization of local class field theory by using K-groups II. J. Fac. Sci. Univ. Tokyo, 27:603-683, 1980.

[13] K. Kato. A generalization of local class field theory by using K-groups III. Fac. Sci. Univ. Tokyo, Sect. 1A, 29(31-43), 1982.

[14] K. Kato and S. Saito. Two dimensional class field theory. Adv. Stud. Pure Math, 2:103-152, 1983.

[15] K. Kato and S. Saito. Unramified class field theory of arithmetical surfaces. Ann. of Math. (2), 118(2):241-275, 1983.

30 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue