publication . Preprint . 2015

Holography as a highly efficient RG flow I: Rephrasing gravity

Behr, Nicolas; Kuperstein, Stanislav; Mukhopadhyay, Ayan;
Open Access English
  • Published: 23 Feb 2015
Abstract
We investigate how the holographic correspondence can be reformulated as a generalisation of Wilsonian RG flow in a strongly interacting large $N$ quantum field theory. We firstly define a \textit{highly efficient RG flow} as one in which the Ward identities related to local conservation of energy, momentum and charges preserve the same form at each scale -- to achieve this it is necessary to redefine the background metric and external sources at each scale as functionals of the effective single trace operators. These redefinitions also absorb the contributions of the multi-trace operators to these effective Ward identities. Thus the background metric and extern...
Subjects
free text keywords: High Energy Physics - Theory, Mathematical Physics
Funded by
EC| STRING-QCD-BH
Project
STRING-QCD-BH
String Theory, QCD and Black Holes
  • Funder: European Commission (EC)
  • Project Code: 240210
  • Funding stream: FP7 | SP2 | ERC
,
EC| OBSERVABLESTRING
Project
OBSERVABLESTRING
The Low Energy Limit of String Theory and the Observable World
  • Funder: European Commission (EC)
  • Project Code: 259133
  • Funding stream: FP7 | SP2 | ERC
,
EC| UNILHC
Project
UNILHC
UNIFICATION IN THE LHC ERA
  • Funder: European Commission (EC)
  • Project Code: 237920
  • Funding stream: FP7 | SP3 | PEOPLE
,
EC| CCQCN
Project
CCQCN
Crete Center for Quantum Complexity and Nanotechnology
  • Funder: European Commission (EC)
  • Project Code: 316165
  • Funding stream: FP7 | SP4 | REGPOT
,
EC| MASSTEV
Project
MASSTEV
Mass hierarchy and particle physics at the TeV scale
  • Funder: European Commission (EC)
  • Project Code: 226371
  • Funding stream: FP7 | SP2 | ERC
Download from
17 references, page 1 of 2

[9] W. Chemissany and I. Papadimitriou, “Lifshitz holography: The whole shebang,” JHEP 01 (2015) 052, arXiv:1408.0795 [hep-th].

[10] S. F. Ross, “Holography for asymptotically locally Lifshitz spacetimes,” Class. Quant. Grav. 28 (2011) 215019, arXiv:1107.4451 [hep-th].

[11] J. Hartong, E. Kiritsis, and N. A. Obers, “Lifshitz space-times for Schro¨dinger holography,” Phys. Lett. B746 (2015) 318-324, arXiv:1409.1519 [hep-th]. [OpenAIRE]

[12] E. Kiritsis and Y. Matsuo, “Hyperscaling-Violating Lifshitz hydrodynamics from black-holes,” arXiv:1508.02494 [hep-th].

[13] R. L. Arnowitt, S. Deser, and C. W. Misner, “The Dynamics of general relativity,” Gen.Rel.Grav. 40 (2008) 1997-2027, arXiv:gr-qc/0405109 [gr-qc].

[14] M. Henningson and K. Skenderis, “The Holographic Weyl anomaly,” JHEP 9807 (1998) 023, arXiv:hep-th/9806087 [hep-th]. [OpenAIRE]

[15] M. Henningson and K. Skenderis, “Holography and the Weyl anomaly,” Fortsch.Phys. 48 (2000) 125-128, arXiv:hep-th/9812032 [hep-th].

[16] V. Balasubramanian and P. Kraus, “A Stress tensor for Anti-de Sitter gravity,” Commun.Math.Phys. 208 (1999) 413-428, arXiv:hep-th/9902121 [hep-th].

[17] J. D. Brown and J. W. York, “Quasilocal energy and conserved charges derived from the gravitational action,” Phys. Rev. D 47 (Feb, 1993) 1407-1419. http://link.aps.org/doi/10.1103/PhysRevD.47.1407.

[18] N. Deruelle, M. Sasaki, and Y. Sendouda, “Junction conditions in f(R) theories of gravity,” Prog. Theor. Phys. 119 (2008) 237-251, arXiv:0711.1150 [gr-qc]. [OpenAIRE]

[19] A. Balcerzak and M. P. Dabrowski, “Generalized Israel Junction Conditions for a Fourth-Order Brane World,” Phys. Rev. D77 (2008) 023524, arXiv:0710.3670 [hep-th]. [OpenAIRE]

[20] This procedure is to take all possible diffeomorphism invariant Lagrangian densities (like R) up to fixed order in derivatives, and then construct the corresponding equations of motion (like the Einstein tensor for R). The diffeomorphism invariance of the Lagrangian implies the Bianchi identities.

[21] E. T. Akhmedov, “A Remark on the AdS / CFT correspondence and the renormalization group flow,” Phys.Lett. B442 (1998) 152-158, arXiv:hep-th/9806217 [hep-th]. [OpenAIRE]

[22] J. de Boer, E. P. Verlinde, and H. L. Verlinde, “On the holographic renormalization group,” JHEP 0008 (2000) 003, arXiv:hep-th/9912012 [hep-th].

[23] S. de Haro, S. N. Solodukhin, and K. Skenderis, “Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence,” Commun.Math.Phys. 217 (2001) 595-622, arXiv:hep-th/0002230 [hep-th]. [OpenAIRE]

17 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue