Share  Bookmark

 Download from


[1] E. F. Assmus, Jr. and H. F. Mattson, Jr., On the Possibility of a Projective Plane of Order 10, Algebraic Theory of Codes II, Air Force Cambridge Research Laboratories Report AFCRL710013, Sylvania Electronic Systems, Needleham Heights, Mass., 1970.
[2] R. C. Bose, On the application of the properties of Galois elds to the problem of construction of hyperGraecoLatin squares, Sankhya, 3 (1938) 323338.
[3] R. H. Bruck and H. J. Ryser, The nonexistence of certain projective planes, Can. J. Math., 1 (1949) 8893.
[4] A. Bruen and J. C. Fisher, Blocking sets, karcs and Nets of Order Ten, Advances in Math., 10 (1973) 317320.
[5] R. H. F. Denniston, Nonexistence of a Certain Projective Plane, J. Austral. Math. Soc., 10 (1969) 214218.
[6] L. Euler, Recherches sur une nouvelle espece de quarres magiques, Verh. Zeeuwsch. Genootsch. Wetensch Vlissengen, 9 (1782) 85239.
[7] J. Karhstrom, On Projective Planes, Bachelor's Thesis, Mid Sweden University, 2002.
[8] C. W. H. Lam, The Search for a Finite Projective Plane of Order 10, Amer. Math. Monthly, 98 (1991) 305318.
[9] C. W. H. Lam, L. Thiel, and S. Swiercz, The nonexistence of nite projective planes of order 10, Can. J. Math.,XLI (1989) 11171123.
[10] C. W. H. Lam, L. Thiel, and S. Swiercz, The Nonexistence of Code Words of Weight 16 in a Projective Plane of Order 10, J. Comb. Theory, Series A., 42 (1986) 207214.