publication . Preprint . 2016

Faraday cage angled-etching of nanostructures in bulk dielectrics

Latawiec, Pawel; Burek, Michael J.; Sohn, Young-Ik; Lončar, Marko;
Open Access English
  • Published: 11 Mar 2016
Abstract
For many emerging optoelectronic materials, heteroepitaxial growth techniques do not offer the same high material quality afforded by bulk, single-crystal growth. However, the need for optical, electrical, or mechanical isolation at the nanoscale level often necessitates the use of a dissimilar substrate, upon which the active device layer stands. Faraday cage angled-etching (FCAE) obviates the need for these planar, thin-film technologies by enabling in-situ device release and isolation through an angled-etching process. By placing a Faraday cage around the sample during inductively-coupled plasma reactive ion etching (ICP-RIE), the etching plasma develops an e...
Subjects
free text keywords: Condensed Matter - Mesoscale and Nanoscale Physics
Funded by
NSERC
Project
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)
,
NSF| Graduate Research Fellowship Program (GRFP)
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1144152
  • Funding stream: Directorate for Education & Human Resources | Division of Graduate Education
,
NSF| NNIN: National Nanotechnology Infrastructure Network
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0335765
  • Funding stream: Directorate for Engineering | Division of Electrical, Communications & Cyber Systems
Download from
45 references, page 1 of 3

[1] K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76, 1 (2005), arXiv:0502566 [cond-mat].

[2] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, NJ, 2008).

[3] M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, Appl. Phys. Lett. 73, 2293 (1998).

[4] T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, Appl. Phys. Lett. 80, 1046 (2002).

[5] T. Izuhara, I. L. Gheorma, R. M. Osgood, A. N. Roy, H. Bakhru, Y. M. Tesfu, and M. E. Reeves, Appl. Phys. Lett. 82, 616 (2003).

[6] M. K. Zalalutdinov, M. P. Ray, D. M. Photiadis, J. T. Robinson, J. W. Baldwin, J. E. Butler, T. I. Feygelson, B. B. Pate, and B. H. Houston, Nano Lett. 11, 4304 (2011).

[7] M. Liao, S. Hishita, E. Watanabe, S. Koizumi, and Y. Koide, Adv. Mater. 22, 5393 (2010).

[8] B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, Nano Lett. 12, 1578 (2012), arXiv:1111.5330v1.

[9] C. Xiong, W. H. P. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, Opt. Express 19, 10462 (2011), arXiv:1010.6042.

[10] T.-J. Wang, C.-H. Chu, and C.-Y. Lin, Opt. Lett. 32, 2777 (2007), arXiv:0705.2392.

[11] C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Loncar, Opt. Express 22, 30924 (2014), arXiv:1405.6473.

[12] P. Latawiec, V. Venkataraman, M. J. Burek, B. J. M. Hausmann, I. Bulu, and M. Loncar, Optica 2, 924 (2015).

[13] R. E. Lee, J. Vac. Sci. Technol. B 16, 164 (1979).

[14] C. C. Cheng, A. Scherer, and E. Yablonovitch, Physica 17, 17 (1996).

[15] S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, Nat. Mater. 8, 721 (2009).

45 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue