publication . Preprint . 2015

On topological groups admitting a base at identity indexed with $\omega^\omega$

Leiderman, Arkady G.; Pestov, Vladimir G.; Tomita, Artur H.;
Open Access English
  • Published: 22 Nov 2015
A topological group $G$ is said to have a local $\omega^\omega$-base if the neighbourhood system at identity admits a monotone cofinal map from the directed set $\omega^\omega$. In particular, every metrizable group is such, but the class of groups with a local $\omega^\omega$-base is significantly wider. The aim of this article is to better understand the boundaries of this class, by presenting new examples and counter-examples. Ultraproducts and non-arichimedean ordered fields lead to natural families of non-metrizable groups with a local $\omega^\omega$-base which nevertheless are Baire topological spaces. More examples come from such constructions as the fre...
arXiv: Mathematics::General Topology
free text keywords: Mathematics - General Topology, 22A05
Download from
43 references, page 1 of 3

[1] N. Ailing, On the existence of real-closed fields that are ηα-sets of power ℵα, Trans. Amer. Math. Soc. 103 (1962), 341-352.

[2] P. Bankston, Ultraproducts in topology, General Topology and Appl. 7 (1977), no. 3, 283-308.

[3] B. Cascales, J. Orihuela, On compactness in locally convex spaces, Math. Z. 195 (1987), 365-381.

[4] C. Chis, M. V. Ferrer, S. Hernandez, B. Tsaban, The character of topological groups, via bounded systems, Pontryagin-van Kampen duality and pcf theory, J. Algebra, 420 (2014), 86-119.

[5] N. Dobrinen and S. Todorcevic, Tukey types of ultrafilters, Illinois J. Math. 55 (2011), 907-951.

[6] J. C. Ferrando, J. Ka¸kol, M. Lo´pez Pellicer, S. A. Saxon, Tightness and distinguished Fr´echet spaces, J. Math. Anal. Appl. 324 (2006), 862-881.

[7] J. Flood, Free locally convex spaces, Dissertationes Math CCXXI, PWN, Warczawa, 1984.

[8] D. H. Fremlin, Families of compact sets and Tukey's ordering, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 29-50.

[9] S. S. Gabriyelyan, J. Ka¸kol, A. Leiderman, The strong Pytkeev property for topological groups and topological vector spaces, Monatshefte Math. 175 (2014), 519-542. [OpenAIRE]

[10] S. S. Gabriyelyan, J. Ka¸kol, A. Leiderman, On topological groups with a small base and metrizability, Fundam. Math. 229 (2015), 129-158. [OpenAIRE]

[11] S. S. Gabriyelyan, J. Ka¸kol, Metrization conditions for topological vector spaces with Baire type properties, Topol. Appl. 173 (2014), 135-141. [OpenAIRE]

[12] S. S. Gabriyelyan, J. Ka¸kol, On topological spaces and topological groups with certain local countable networks, Topol. Appl. 190 (2015) 59-73.

[13] J. Ginsburg, The metrizability of spaces whose diagonals have a countable base, Canad. Math. Bull. 20 (1977), 513-514. [OpenAIRE]

[14] M. I. Graev, On free products of topological groups, Izvestiya Akad. Nauk SSSR. Ser. Mat. 14 (1950), 343-354.

[15] M. Graev, Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 278- 324 (In Russian). Topology and Topological Algebra. Translation Series 1, 8 (1962), 305-364.

43 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue