publication . Preprint . Article . 2006

Using chiral perturbation theory to extract the neutron-neutron scattering length from pi- d ---> nn gamma

A. Gårdestig; D. R. Phillips;
Open Access English
  • Published: 19 Jan 2006
Abstract
The reaction pi- d -> n n gamma is calculated in chiral perturbation theory so as to facilitate an extraction of the neutron-neutron scattering length (a_nn). We include all diagrams up to O(Q^3). This includes loop effects in the elementary pi- p -> gamma n amplitude and two-body diagrams, both of which were ignored in previous calculations. We find that the chiral expansion for the ratio of the quasi-free (QF) to final-state-interaction (FSI) peaks in the final-state neutron spectrum converges well. Our third-order calculation of the full spectrum is already accurate to better than 5%. Extracting a_nn from the shape of the entire pi- d -> n n gamma spectrum us...
Subjects
free text keywords: Nuclear Theory, Nuclear Experiment, Nuclear and High Energy Physics, Few-body systems, Neutron scattering, Neutron, Wave function, Feynman diagram, symbols.namesake, symbols, Nuclear physics, Perturbation theory, Physics, Scattering length, Atomic physics, Chiral perturbation theory
Related Organizations
21 references, page 1 of 2

[1] G. A. Miller, B. M. K. Nefkens, and I. Sˇlaus, Phys. Rep. 194, 1 (1990).

[2] E. J. Stephenson et al., Phys. Rev. Lett. 91, 142302 (2003).

[3] A. K. Opper et al., Phys. Rev. Lett. 91, 212302 (2003).

[4] W. I. Furman et al., J. Phys. G: Nucl. Part. Phys. 28, 2627 (2002).

[5] V. Huhn et al., Phys. Rev. Lett. 85, 1190 (2000).

[6] D. E. Gonza´lez Trotter et al., Phys. Rev. Lett. 83, 3788 (1999).

[7] I. Sˇlaus, Y. Akaishi, and H. Tanaka, Phys. Rep. 173, 257 (1989).

[8] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

[9] S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001).

[10] C. R. Howell et al., Phys. Lett. B 444, 252 (1998).

[11] W. R. Gibbs, B. F. Gibson, and G. J. Stephenson, Jr., Phys Rev. C 11, 90 (1975); 12 2130(E) (1975); 16, 322 (1977); 16, 327 (1977); 17, 856(E) (1978).

[12] B. Gabioud et al., Phys. Rev. Lett. 42, 1508 (1979); Phys. Lett. 103B, 9 (1981); Nucl. Phys. A420, 496 (1984); O. Schori, B. Gabioud, C. Joseph, J. P. Perroud, D. Ru¨egger, M. T. Tran, P. Truo¨l, E. Winkelmann, and W. Dahme, Phys. Rev. C 35, 2252 (1987).

[13] G. F. de T´eramond, Phys. Rev. C 16, 1976 (1977); G. F. de T´eramond, J. Pa´ez, and C. W. Soto Vargas, ibid. 21, 2542 (1980); G. F. de T´eramond and B. Gabioud, ibid. 36, 691 (1987).

[14] T. Becher and H. Leutwyler, Eur. Phys. J. C 9, 643 (1999).

[15] T. Fuchs, J. Gegelia, G. Japaridze and S. Scherer, Phys. Rev. D 68, 056005 (2003).

21 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue