Scale relativity and fractal space-time: theory and applications

Preprint English OPEN
Nottale, Laurent (2008)

In the first part of this contribution, we review the development of the theory of scale relativity and its geometric framework constructed in terms of a fractal and nondifferentiable continuous space-time. This theory leads (i) to a generalization of possible physicall... View more
  • References (82)
    82 references, page 1 of 9

    [1] Abbott L.F. & Wise M.B., 1981, Am. J. Phys. 49, 37.

    [2] Agnese A.G., Festa R., 1997, Phys. Lett. A 227, 165.

    [3] All`egre C., Le Mouel J. & Provost A., 1982, Nature 297, 47

    [4] Amelino-Camelia G., 2001, Phys. Lett. B 510, 255.

    [5] Amelino-Camelia G., 2002, Int. J. Mod. Phys. D 11, 1643.

    [6] Auffray Ch. & Nottale L., 2008, Progr. Biophys. Mol. Bio., 97, 79.

    [7] Ben Adda F. & Cresson J., 2000, C. R. Acad. Sci. Paris 330, 261.

    [8] Ben Adda F. & Cresson J., 2004, Chaos, Solitons & Fractals 19, 1323.

    [9] Ben Adda F. & Cresson J., 2005, Applied Mathematics and Computation 161, 323.

    [10] Berry M.V., 1996, J. Phys. A: Math. Gen. 29, 6617.

  • Metrics
    No metrics available
Share - Bookmark