On the plane wave Riemann Problem in Fluid Dynamics

Preprint English OPEN
Einfeldt, B.;
  • Subject: Mathematical Physics | Physics - Fluid Dynamics | 65M08 | 65M12 | Mathematics - Numerical Analysis

The paper contains a stability analysis of the plane-wave Riemann problem for the two-dimensional hyperbolic conservation laws for an ideal compressible gas. It is proved that the contact discontinuity in the plane-wave Riemann problem is unstable under perturbations. T... View more
  • References (14)
    14 references, page 1 of 2

    [ATP1984] D. A. Anderson, J. C. Tannehill, R. H. Pletcher, "Computational Fluid Mechanics and Heat Transfer", HEMISPHERE Publishing Corporation, 1984.

    [CF1948] R. Courant and K. 0. Friedrichs, "Supersonic Flow and Shock Waves", Interscience, New York, 1948 [DMG;2004]M. Dumbser, J. M. Moschetta and J. Gressier, "A Matrix stability analysis of the carbuncle phenomenon", J. Comput. Phys., 197, 647-670 (2004) [EIN1988] B. Einfeldt, "On Godunov-type methods for gas dynamics", SIAM J.

    Numer. Anal., 25, 294-318 (1988).

    [GRE1998]J. Gressier and J.-M. Moschetta "Robustness versus Accuracy in ShockWave Computations", International Journal of Numerical Methods in Fluids, July 1999.

    [KL1989] H. O. Kreiss and J. Lorenz, "Initial-Boundary Value Problems and the Navier-Stokes Equations", Academic Press 1989.

    [LAX2006] P. D. Lax, "Hyperbolic Partial Differential Equations", Courant Lecture Notes 14, 2006.

    [LEV2002] R. J. LeVeque, "Finite Volume Methods for Hyperbolic Problems", Cambridge University Press, Cambridge, 2002.

    [LL1959] L. D. Landau and E. M. Lifchitz, "Fluid Mechanics", Addison-Wesley Publishing, 1957.

    [MA1983] A. Majda, "The stability of multi-dimensional shock fronts", Memories of the AMS Number 275, 1983.

    [PEIM1988] K.M. Perry and S. T Imlay, "Blunt Body Flow Simulations", AIAA Paper, 88-2924,1988.

  • Metrics
Share - Bookmark