Bi-modal G\"odel logic over [0,1]-valued Kripke frames

Preprint English OPEN
Caicedo, Xavier; Rodriguez, Ricardo Oscar;
(2011)
  • Subject: Mathematics - Logic | Computer Science - Artificial Intelligence
    arxiv: Computer Science::Logic in Computer Science | Mathematics::Logic

We consider the G\"odel bi-modal logic determined by fuzzy Kripke models where both the propositions and the accessibility relation are infinitely valued over the standard G\"odel algebra [0,1] and prove strong completeness of Fischer Servi intuitionistic modal logic IK... View more
  • References (23)
    23 references, page 1 of 3

    [8] A. Chagrov y M. Zakharyaschev, Modal Logic, Clarendon Press, Oxford, 1997.

    [9] Davoren, J.M., Topological Semantics and Bisimulations for Intuitionistic Modal Logics and Their Classical Companion Logics In S. Artemov (ed.), Logical Foundations of Computer Science (LFCS 2007) , LNCS 4514, pp. 162 - 180, Springer-Verlag, 2007.

    [10] Kosta Do˘sen, Models for Stronger Intuitionistic Modal Logics. Studia Logica 44 (1985) 39-70

    [11] Pantelis E. Eleftheriou and Costas D. Koutras. Frame constructions, truth invariance and validity preservation in many-valued modal logic. In Journal of Applied Non-Classical Logics. Vol. 15, nro. 4: 367-388. 2005.

    [12] Francesc Esteva, Pere Garcia, Lluis Godo, and Ricardo Rodr´ıguez. A modal account of similarity-based reasoning. International Journal of Approximate Reasoning, 16(3-4):235-260, 1997.

    [13] G. Fischer Servi, G. The finite model property for MIPQ and some consequences. Notre Dame J.of Formal Logic XIX (1978) 687-692.

    [14] G. Fischer Servi. Axiomatizations for some intutitionistic modal logics, Rend. Sem. Mat. Polit de Torino 42 (1984) 179-194

    [15] Melving Fitting. Many valued modal logics. Fundamenta Informaticae 15 (1991) 325-254

    [16] Melving Fitting. Many valued modal logics, II. Fundamenta Informaticae 17 (1992) 55-73

    [17] C. Grefe, Fischer Servis, Intuitionistic modal logic has the finite model property, In Advances in Modal Logic Vol.1 CSLI, Stanford, 1998

  • Metrics
    No metrics available
Share - Bookmark