publication . Preprint . 2009

Smooth vectors and Weyl-Pedersen calculus for representations of nilpotent Lie groups

Beltita, Ingrid; Beltita, Daniel;
Open Access English
  • Published: 25 Oct 2009
We present some recent results on smooth vectors for unitary irreducible representations of nilpotent Lie groups. Applications to the Weyl-Pedersen calculus of pseudo-differential operators with symbols on the coadjoint orbits are also discussed.
arXiv: Mathematics::Representation TheoryMathematics::Operator Algebras
free text keywords: Mathematics - Representation Theory, Mathematics - Analysis of PDEs, 22E25, Secondary 22E27, 35S05, 47G30
Download from
55 references, page 1 of 4

[An69] R.F.V. Anderson, The Weyl functional calculus. J. Functional Analysis 4(1969), 240- 267.

[An72] R.F.V. Anderson, The multiplicative Weyl functional calculus. J. Functional Analysis 9(1972), 423-440.

[BB09a] I. Beltit¸a˘, D. Beltit¸a˘, Magnetic pseudo-differential Weyl calculus on nilpotent Lie groups. Ann. Global Anal. Geom. 36 (2009), no. 3, 293-322.

[BB09b] I. Beltit¸a˘, D. Beltit¸a˘, Uncertainty principles for magnetic structures on certain coadjoint orbits. J. Geom. Phys. (to appear).

[BB09c] I. Beltit¸a˘, D. Beltit¸a˘, Modulation spaces of symbols for representations of nilpotent Lie groups. Preprint arXiv:0908.3917v2 [math.AP].

[BB09d] I. Beltit¸a˘, D. Beltit¸a˘, A survey on Weyl calculus for representations of nilpotent Lie groups. In: S.T. Ali, P. Kielanowski, A. Odzijewicz, M. Schlichenmeier, Th. Voronov (eds.), XXVIII Workshop on Geometric Methods in Physics, AIP Conf. Proc., Amer. Inst. Phys., Melville, NY (to appear). (See preprint arXiv:0910.1994v1 [math.AP].) [Br56] F. Bruhat, Sur les repr´esentations induites des groupes de Lie. Bull. Soc. Math. France 84 (1956), 97-205.

[Ca76] P. Cartier, Vecteurs diff´erentiables dans les repr´esentations unitaires des groupes de Lie. In: S´eminaire Bourbaki (1974/1975), Exp. No. 454. Lecture Notes in Math., Vol. 514, Springer, Berlin, 1976, pp. 20-34.

[Co68] I. Colojoara˘, Elements of Spectral Theory. (Romanian) Ed. Acad., Bucharest, 1968.

[Co84] L. Corwin, Matrix coefficients of nilpotent Lie groups. In: Lie Group Representations, III (College Park, Md., 1982/1983). Lecture Notes in Math., 1077, Springer, Berlin, 1984, pp. 1-11.

[CG90] L.J. Corwin, F.P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications. Part I. Basic theory and examples. Cambridge Studies in Advanced Mathematics, 18. Cambridge University Press, Cambridge, 1990.

[CGP77] L.J. Corwin, F.P. Greenleaf, R. Penney, A general character formula for irreducible projections on L2 of a nilmanifold. Math. Ann. 225 (1977), no. 1, 21-32.

[CM96] L. Corwin, C.C. Moore, Lp matrix coefficients for nilpotent Lie groups. Rocky Mountain J. Math. 26 (1996), no. 2, 523-544. [OpenAIRE]

[DDJP09] E. Damek, J. Dziuban´ski, Ph. Jaming, S. Perez-Esteva, Distributions that are convolvable with generalized Poisson kernel of solvable extensions of homogeneous Lie groups, Math. Scand. 105(2009), 31-65.

[Dix74] J. Dixmier, Alg`ebres Enveloppantes. Cahiers Scientifiques, Fasc. XXXVII. GauthierVillars E´diteur, Paris-Brussels-Montreal, Que., 1974.

[DM78] J. Dixmier, P. Malliavin, Factorisations de fonctions et de vecteurs ind´efiniment diff´erentiables. Bull. Sci. Math. (2) 102 (1978), no. 4, 307-330.

55 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue