Smooth vectors and Weyl-Pedersen calculus for representations of nilpotent Lie groups

Preprint English OPEN
Beltita, Ingrid; Beltita, Daniel;
(2009)
  • Subject: 22E25 | Secondary 22E27, 35S05, 47G30 | Mathematics - Analysis of PDEs | Mathematics - Representation Theory
    arxiv: Mathematics::Representation Theory | Mathematics::Operator Algebras

We present some recent results on smooth vectors for unitary irreducible representations of nilpotent Lie groups. Applications to the Weyl-Pedersen calculus of pseudo-differential operators with symbols on the coadjoint orbits are also discussed.
  • References (55)
    55 references, page 1 of 6

    [An69] R.F.V. Anderson, The Weyl functional calculus. J. Functional Analysis 4(1969), 240- 267.

    [An72] R.F.V. Anderson, The multiplicative Weyl functional calculus. J. Functional Analysis 9(1972), 423-440.

    [BB09a] I. Beltit¸a˘, D. Beltit¸a˘, Magnetic pseudo-differential Weyl calculus on nilpotent Lie groups. Ann. Global Anal. Geom. 36 (2009), no. 3, 293-322.

    [BB09b] I. Beltit¸a˘, D. Beltit¸a˘, Uncertainty principles for magnetic structures on certain coadjoint orbits. J. Geom. Phys. (to appear).

    [BB09c] I. Beltit¸a˘, D. Beltit¸a˘, Modulation spaces of symbols for representations of nilpotent Lie groups. Preprint arXiv:0908.3917v2 [math.AP].

    [BB09d] I. Beltit¸a˘, D. Beltit¸a˘, A survey on Weyl calculus for representations of nilpotent Lie groups. In: S.T. Ali, P. Kielanowski, A. Odzijewicz, M. Schlichenmeier, Th. Voronov (eds.), XXVIII Workshop on Geometric Methods in Physics, AIP Conf. Proc., Amer. Inst. Phys., Melville, NY (to appear). (See preprint arXiv:0910.1994v1 [math.AP].) [Br56] F. Bruhat, Sur les repr´esentations induites des groupes de Lie. Bull. Soc. Math. France 84 (1956), 97-205.

    [Ca76] P. Cartier, Vecteurs diff´erentiables dans les repr´esentations unitaires des groupes de Lie. In: S´eminaire Bourbaki (1974/1975), Exp. No. 454. Lecture Notes in Math., Vol. 514, Springer, Berlin, 1976, pp. 20-34.

    [Co68] I. Colojoara˘, Elements of Spectral Theory. (Romanian) Ed. Acad., Bucharest, 1968.

    [Co84] L. Corwin, Matrix coefficients of nilpotent Lie groups. In: Lie Group Representations, III (College Park, Md., 1982/1983). Lecture Notes in Math., 1077, Springer, Berlin, 1984, pp. 1-11.

    [CG90] L.J. Corwin, F.P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications. Part I. Basic theory and examples. Cambridge Studies in Advanced Mathematics, 18. Cambridge University Press, Cambridge, 1990.

  • Metrics
Share - Bookmark