Share  Bookmark

 Download from


 Funded by

[1] F. AbuKhzam and M. Langston, Graph coloring and the immersion order, Lecture Notes in Computer Science 2697 (2003), 394403.
[2] M. Devos, Z. Dvoˇra´k, J. Fox, J. McDonald, B. Mohar, and D. Scheide, Minimum degree condition forcing complete graph immersion, Combinatorica 34 (2014), 279 298.
[3] Z. Dvoˇra´k and L. Yepremyan, Comptete graph immersions and minimum degree, preprint, arXiv:1512.00513.
[4] M. Devos, K. Kawarabayashi, B. Mohar, and H. Okamura, Immersing small complete graphs, Ars Math. Contemp. 3 (2010), 139146.
[5] P. Duchet and H. Meyniel, On Hadwigers number and the stability number, Ann. Discrete Math. 13 (1982), 7174.
[6] J. Fox and F. Wei, On the number of cliques in graphs with a forbidden subdivision or immersion, preprint, arXiv:1606.06810.
[7] H. Hadwiger, Uber eine Klassifikation der Streckenkomplexe, Vierteljschr. Naturforsch. Ges. Zurich 88 (1943), 133143.
[8] A. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica 4 (1984), 307316.
[9] T.N. Le and P. Wollan, Forcing clique immersions through chromatic number, Electronic Notes Disc. Math. 54(1) (2016), 121126.
[10] F. Lescure and H. Meynial, On a problem upon configurations contained in graphs with given chromatic number, Ann. Discrete Math. 41 (1989), 325331. Graph theory in memory of G.A. Dirac, Sandbjerg (1985).