publication . Preprint . Article . 2013

Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones

Mohamed Assili; S. Haddad;
Open Access English
  • Published: 29 Apr 2013
Abstract
We theoretically study the effect of the motion and the merging of Dirac cones on the interlayer magnetoresistance in multilayer graphene-like systems. This merging, which can be induced by a uniaxial strain, gives rise in a monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase whereby Dirac points disappear. Based on a universal Hamiltonian, proposed to describe the motion and the merging of Dirac points in two-dimensional Dirac electron crystals, we calculate the interlayer conductivity of a stack of deformed graphene-like layers using the Kubo formula in the quantum limit where only the contribution of t...
Persistent Identifiers
Subjects
arXiv: Condensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter::Materials ScienceCondensed Matter::Strongly Correlated Electrons
free text keywords: Condensed Matter - Mesoscale and Nanoscale Physics, General Materials Science, Condensed Matter Physics, Helical Dirac fermion, Dirac sea, symbols.namesake, symbols, Kubo formula, Quantum limit, Landau quantization, Physics, Hamiltonian (quantum mechanics), Magnetoresistance, Dirac (video compression format), Quantum mechanics
25 references, page 1 of 2

-20 0 20 40 60 80 100 120 140 160 180 200 θ (deg)

1 K. S. Novoselov, A. K. Geim, S. V. Morozov,D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and, A. A. Firsov, Science, 306 666 (2004) ,K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Gregorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005), [OpenAIRE]

2 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009)

3 A. Kobayashi, S. Katayama, K. Noguchi and Y. Suzumura, J. Phys. Soc. Jpn 73 3135 (2004), A. Kobayashi, S. Katayama, Y. Suzumura, and H. Fukuyama, J. Phys. Soc. Jpn 76 034711 (2007).

4 M.O. Goerbig, J.-N. Fuchs, G. Montambaux, and F. Piechon, Phys. Rev. B 78, 045415 (2008).

5 H. Kino and T. Miyazaki, J. Phys. Soc. Jpn 75 034704 (2006).

6 P. Alemany, J. -P. Pouget, and E. Canadell, Phys. Rev. B 85 195118 (2012).

7 T. Morinari, T. Himura and T. Tohyama, J. Phys. Soc. Jpn. 78, 023704 (2009).

8 N. Tajima, S. Sugawara, R. Kato, Y. Nishio, and K. Kajita, Phys. Rev. Lett. 102, 176403 (2009).

9 T. Osada, J. Phys. Soc. Jpn. 77, 084711 (2008)

10 T. Osada, J. Phys. Soc. Jpn. 80, 033708 (2011).

11 M. Monteverde, M. O. Goerbig, P. Auban-Senzier, F. Navarin, H. Henck , C. R. Pasquier, C. M´ezi`ere, and P. Batail, (unpublished).

12 A. Kobayashi, Y. Suzumura, F. Pi´echon and G. Montambaux, Phys. Rev. B 84 075450 (2011).

13 F. Pi´echon, Y. Suzumura and T. Morinari, condmat/1303.2652 (unpublished).

14 L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, T. Esslinger, Nature, 483, 302 (2012).

25 references, page 1 of 2
Any information missing or wrong?Report an Issue