Stochastic deformation of a thermodynamic symplectic structure

Preprint English OPEN
Kazinski, P. O. (2008)
  • Related identifiers: doi: 10.1103/PhysRevE.79.011105
  • Subject: Condensed Matter - Statistical Mechanics | High Energy Physics - Theory
    arxiv: High Energy Physics::Lattice

A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered.
  • References (81)
    81 references, page 1 of 9

    [1] J.W. Gibbs, The Collected Works Vol. I: Thermodynamics (Longmans, Green and Co., New York, 1928).

    [2] C. Carath´eodory, Untersuchungen ueber die Grundlagen der Thermodynamik, Math. Ann. 67, 355 (1909).

    [3] A. Land´e, Axiomatische Begru¨ndung der Thermodynamik durch Carath´eodory (Springer-Verlag, Berlin, 1926).

    [4] T. Ehrenfest-Afanassjewa, Die Grundlagen der Thermodynamik (E. J. Brill, Leiden, 1956).

    [5] L. Tisza, Generalized Thermodynamics (MIT Press, Cambridge, Massachusetts, 1966).

    [6] J.M. Jauch, On a new foundation of equilibrium thermodynamics, Found. Phys. 2, 327 (1972); Analytical thermodynamics. Part I. Thermostatics - general theory, Found. Phys. 5, 111 (1975).

    [7] H.B. Callen, Thermodynamics and Introduction to Thermostatistics (John Wiley & Sons, Singapore, 1985).

    [8] R. Hermann, Geometry, Physics and Systems (Marcel Dekker, New York, 1973).

    [9] F. Weinhold, Metric geometry of equilibrium thermodynamics, J. Chem. Phys. 63, 2479 (1975).

    [10] P. Salamon, E. Ihrig, and R.S. Berry, A group of coordinate transformations which preserve the metric of Weinhold, J. Math. Phys. 24, 2515 (1983). gases, arXiv:0807.4632v1.

  • Metrics
    No metrics available
Share - Bookmark