publication . Preprint . 2017

Positroids Induced by Rational Dyck Paths

Gotti, Felix;
Open Access English
  • Published: 29 Jun 2017
Comment: 23 pages, 11 figures
arXiv: Mathematics::Combinatorics
free text keywords: Mathematics - Combinatorics
Download from
26 references, page 1 of 2

[1] M. Aissen, I. J. Schoenberg, and A. Whitney. On generating functions of totally positive sequences, J. Anal. Math. 2 (1952) 93{103. [OpenAIRE]

[2] J. Anderson. Partitions which are simultaneously t1- and t2-core, Discrete Math. 248 (2002) 237{243.

[3] F. Ardila, C. Benedetti, and J. Doker. Matroid polytopes and their volumes Discrete and Computational Geometry 43 (2010) 841{854.

[4] F. Ardila, F. Rincon, and L. Williams. Positroids and non-crossing partitions, Trans. Amer. Math. Soc. 368 (2016) 337{363.

[5] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, A. Postnikov, and J. Trnka. Grassmannian Geometry of Scattering Amplitudes. Cambridge University Press, 2016. Preliminary version titled \Scattering amplitudes and the positive Grassmannian" on the arXiv: [OpenAIRE]

[6] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, and J. Trnka, Uni cation of residues and Grassmannian dualities, JHEP 49 (2011). [OpenAIRE]

[7] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, and J. Trnka, Local spacetime physics from the Grassmannian, JHEP 108 (2011).

[8] D. Armstrong, C. R. H. Hanusa, and B. C. Jones. Results and conjectures on simultaneous core partitions, European J. Combin. 41 (2014) 205{220.

[9] M. T. L. Bizley. Derivation of a new formula for the number of minimal lattice paths from (0; 0) to (km; kn) having just t contacts with the line my = nx and having no points above this line; and a proof of Grossmans formula for the number of paths which may touch but do not rise above this line, J. Inst. Actuar. 80 (1954) 55{62.

[10] J. L. Bourjaily. Positroids, plabic graphs, and scattering amplitudes in Mathematica, on the Arxiv:

[11] A. Chavez and F. Gotti. Dyck paths and positroids from unit interval orders, on the arXiv:

[12] S. Fomin and A. Zelevinsky. Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999) 335{380. [OpenAIRE]

[13] I. M. Gelfand, R. M. Goresky, R. D. MacPherson, and V. V. Serganova. Combinatorial geometries, convex polyhedra, and Schubert cells, Adv. in Math. 63 (1987) 301{316. [OpenAIRE]

[14] H. D. Grossman. Fun with lattice points: paths in a lattice triangle, Scripta Math. 16 (1950) 207{212.

[15] Y. Kodama and L. K. Williams. KP solitons and total positivity on the Grassmannian, Inventiones Mathematicae, 198 (2014) 637{699.

26 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue