publication . Article . Other literature type . Preprint . 2014

a novel framework of trajectory compression in road networks

Song, Renchu; Sun, Weiwei; Zheng, Baihua; Zheng, Yu;
Restricted
  • Published: 06 Feb 2014 Journal: Proceedings of the VLDB Endowment, volume 7, pages 661-672 (issn: 2150-8097, Copyright policy)
  • Publisher: VLDB Endowment
Abstract
Comment: 27 pages, 17 figures
Subjects
free text keywords: Spatial representation, Road networks, Data mining, computer.software_genre, computer, Trajectory compression, Location data, Bounded function, Trajectory, Database, Computer science, Computer Science - Databases
Related Organizations
20 references, page 1 of 2

[1] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to bibliographic search. CACM, 18(6):333-340, 1975. [OpenAIRE]

[2] Richard Bellman. On the approximation of curves by line segments using dynamic programming. CACM, 4(6):284, 1961.

[3] Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching vehicle tracking data. In VLDB'05, pages 853-864, 2005.

[4] Hu Cao and Ouri Wolfson. Nonmaterialized motion information in transport networks. In ICDT'05, pages 173-188, 2005.

[5] David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica, 10(2):112-122, 1973.

[6] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: concepts and techniques. Morgan Kaufmann, 2006.

[7] John Edward Hershberger and Jack Snoeyink. Speeding up the Douglas-Peucker line-simplification algorithm. University of British Columbia, Department of Computer Science, 1992.

[8] David A. Huffman. A method for the construction of minimum-redundancy codes. IRE, 40(9):1098- 1101, 1952.

[9] Donald E. Kauth. The art of computer programming: Volume 3/Sorting and searching. Addison-Wesley, 1973.

[10] Georgios Kellaris, Nikos Pelekis, and Yannis Theodoridis. Map-matched trajectory compression. JSS, 86(6):1566-1579, 2013.

[11] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. An online algorithm for segmenting time series. In ICDM'01, pages 289-296, 2001.

[13] Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei Wang, and Yan Huang. Map-matching for low-sampling-rate gps trajectories. In GIS'09, pages 352-361, 2009.

[14] Wuman Luo, Haoyu Tan, Lei Chen, and Lionel M. Ni. Finding time period-based most frequent path in big trajectory data. In SIGMOD'13, pages 713-724, 2013.

[15] Robert B. McMaster. A statistical analysis of mathematical measures for linear simplification. The American Cartographer, 13(2):103-116, 1986.

[16] Nirvana Meratnia and A. Rolf. Spatiotemporal compression techniques for moving point objects. In EDBT'04, pages 765-782, 2004. [OpenAIRE]

20 references, page 1 of 2
Related research
Abstract
Comment: 27 pages, 17 figures
Subjects
free text keywords: Spatial representation, Road networks, Data mining, computer.software_genre, computer, Trajectory compression, Location data, Bounded function, Trajectory, Database, Computer science, Computer Science - Databases
Related Organizations
20 references, page 1 of 2

[1] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to bibliographic search. CACM, 18(6):333-340, 1975. [OpenAIRE]

[2] Richard Bellman. On the approximation of curves by line segments using dynamic programming. CACM, 4(6):284, 1961.

[3] Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching vehicle tracking data. In VLDB'05, pages 853-864, 2005.

[4] Hu Cao and Ouri Wolfson. Nonmaterialized motion information in transport networks. In ICDT'05, pages 173-188, 2005.

[5] David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica, 10(2):112-122, 1973.

[6] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: concepts and techniques. Morgan Kaufmann, 2006.

[7] John Edward Hershberger and Jack Snoeyink. Speeding up the Douglas-Peucker line-simplification algorithm. University of British Columbia, Department of Computer Science, 1992.

[8] David A. Huffman. A method for the construction of minimum-redundancy codes. IRE, 40(9):1098- 1101, 1952.

[9] Donald E. Kauth. The art of computer programming: Volume 3/Sorting and searching. Addison-Wesley, 1973.

[10] Georgios Kellaris, Nikos Pelekis, and Yannis Theodoridis. Map-matched trajectory compression. JSS, 86(6):1566-1579, 2013.

[11] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. An online algorithm for segmenting time series. In ICDM'01, pages 289-296, 2001.

[13] Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei Wang, and Yan Huang. Map-matching for low-sampling-rate gps trajectories. In GIS'09, pages 352-361, 2009.

[14] Wuman Luo, Haoyu Tan, Lei Chen, and Lionel M. Ni. Finding time period-based most frequent path in big trajectory data. In SIGMOD'13, pages 713-724, 2013.

[15] Robert B. McMaster. A statistical analysis of mathematical measures for linear simplification. The American Cartographer, 13(2):103-116, 1986.

[16] Nirvana Meratnia and A. Rolf. Spatiotemporal compression techniques for moving point objects. In EDBT'04, pages 765-782, 2004. [OpenAIRE]

20 references, page 1 of 2
Related research
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . Preprint . 2014

a novel framework of trajectory compression in road networks

Song, Renchu; Sun, Weiwei; Zheng, Baihua; Zheng, Yu;