A Simple Proof of Cauchy's Surface Area Formula

Preprint English OPEN
Tsukerman, Emmanuel ; Veomett, Ellen (2016)
  • Subject: Mathematics - Probability | Mathematics - Metric Geometry | Mathematics - Differential Geometry

We give a short and simple proof of Cauchy's surface area formula, which states that the average area of a projection of a convex body is equal to its surface area up to a multiplicative constant in the dimension.
  • References (7)

    [Bon29] T Bonnesen. Les problemes des isoperimetres et des isepiphanes. 1929.

    [Cau41] Augustin Cauchy. Note sur divers theorems relatifs a la recti cation des courbes et a la quadrature des surfaces. C.R. Acad. Sci., 13:1060{1065, 1841.

    [Cau50] Augustin Cauchy. Memoire sur la recti cation des courbes et la quadrature des surfaces courbes. Mem. Acad. Sci, 22(3), 1850.

    [KR97] Daniel A. Klain and Gian-Carlo Rota. Introduction to geometric probability. Lezioni Lincee. [Lincei Lectures]. Cambridge University Press, Cambridge, 1997.

    [Kub25] T Kubota. uber konvex-geschlossene manningfaltigkeiten im n-dimensionalen raume. Sci. Rep. To^hoku Univ., 14:85{99, 1925.

    [Min] H Minkowski. Theorie der konvexen korper, insbesondere begrundung ihres ober achenbegri s. Ges. Abh., 2:131{229.

    [Sch14] Rolf Schneider. Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, expanded edition, 2014.

  • Metrics
    No metrics available
Share - Bookmark