publication . Preprint . 2019

Electronic level structure of $\mathrm{Th}^+$ in the range of the $^{229m}\mathrm{Th}$ isomer energy

Meier, David-Marcel; Thielking, Johannes; Głowacki, Przemysław; Okhapkin, Maksim V.; Müller, Robert A.; Surzhykov, Andrey; Peik, Ekkehard;
Open Access English
  • Published: 25 Feb 2019
Using resonant two-step laser excitation of trapped $^{232}\mathrm{Th}^+$ ions, we observe 166 previously unknown energy levels of even parity within the energy range from 7.8 to 9.8 eV and angular momenta from $J=1/2$ to $7/2$. We also classify the high-lying levels observed in our earlier experiments by the total angular momentum and perform ab-initio calculations to compare their results with the observed level density. The observed levels can be relevant for the excitation or decay of the $^{229m}\mathrm{Th}$ isomeric nuclear state which lies in this energy range. The high density of electronic levels promises a strongly enhanced electronic bridge excitation...
free text keywords: Physics - Atomic Physics
Funded by
EC| nuClock
Towards a nuclear clock with Thorium-229
  • Funder: European Commission (EC)
  • Project Code: 664732
  • Funding stream: H2020 | RIA
FET H2020FET OPEN: FET-Open research projects
FET H2020FET OPEN: Towards a nuclear clock with Thorium-229
Download from
22 references, page 1 of 2

[1] E. F. Worden, J. Blaise, M. Fred, N. Trautmann, and J.- F. Wyart, in: The Chemistry of the Actinide and Transactinide Elements, chap. 16 , 3rd ed., edited by L. R. Morss, N. Edelstein, J. Fuger, and J. J. Katz, Vol. 3 (Springer Netherlands, 2006).

[2] C. Lovis and F. Pepe, Astron. Astrophys. 468, 1115 (2007).

[3] S. L. Redman, G. Nave, and C. J. Sansonetti, Astrophys. J. Suppl. Ser. 211, 4 (2014).

[4] O. Herrera-Sancho, N. Nemitz, M. Okhapkin, and E. Peik, Phys. Rev. A 88, 012512 (2013).

[5] N. Rosenzweig and C. E. Porter, Phys. Rev. 120, 1698 (1960).

[6] B. Beck, J. Becker, P. Beiersdorfer, G. Brown, K. J. Moody, J. B. Wilhelmy, F. Porter, C. Kilbourne, and R. Kelley, Phys. Rev. Lett. 98, 142501 (2007).

[7] B. R. Beck, G. V. Brown, R. L. Kelley, J. A. Becker, C. Y. Wu, F. S. Porter, J. B. Wilhelmy, C. A. Kilbourne, J. K. Moody, et al., LLNL-PROC-415170 (2009).

[8] E. V. Tkalya, V. O. Varlamov, V. V. Lomonosov, and S. A. Nikulin, Phys. Scripta 53, 296 (1996).

[9] F. Karpeshin, I. Band, and M. Trzhaskovskaya, Nucl. Phys. A 654, 579 (1999).

[10] S. G. Porsev, V. V. Flambaum, E. Peik, and C. Tamm, Phys. Rev. Lett. 105, 182501 (2010).

[11] E. Peik and M. Okhapkin, C. R. Phys. 16, 516 (2015).

[12] B. Seiferle, L. von der Wense, and P. G. Thirolf, Phys. Rev. Lett. 118, 042501 (2017).

[13] R. Zalubas and C. H. Corliss, J. Res. Natl. Bur. Stand. Sect. A 78A, 163 (1974).

[14] M. V. Okhapkin, D. M. Meier, E. Peik, M. S. Safronova, M. G. Kozlov, and S. G. Porsev, Phys. Rev. A 92, 020503 (2015).

[15] V. Dzuba and V. Flambaum, Phys. Rev. Lett. 104, 213002 (2010).

22 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue