The vanishing discount problem and viscosity Mather measures. Part 2: boundary value problems

Preprint English OPEN
Ishii, Hitoshi; Mitake, Hiroyoshi; Tran, Hung V.;
(2016)
  • Subject: Mathematics - Analysis of PDEs | 35B40, 35J70, 49L25

In arXiv:1603.01051 (Part 1 of this series), we have introduced a variational approach to studying the vanishing discount problem for fully nonlinear, degenerate elliptic, partial differential equations in a torus. We develop this approach further here to handle boundar... View more
  • References (21)
    21 references, page 1 of 3

    The set GS(z, λ)′ is indeed the dual cone of GS(z, λ) in RL. Set PS := PΩ×A, and, for any compact subset K of A, let PKS denote the subset of all probability measures μ ∈ PS that have support in Tn × K, that is, and, hence, that u is a subsolution of (3.11), with θ = 1. Next, we consider the case when t ≥ 1. By (3.4) and (3.12), we get λvλ(z) ≥ lim hμ1k, Li + λhμ02, gi = ρ + hμ01, Li + λhμ02, gi, k→∞

    [7] I. Capuzzo-Dolcetta, F. Leoni, and A. Porretta, Ho¨lder estimates for degenerate elliptic equations with coercive Hamiltonians, Trans. Amer. Math. Soc. 362 (2010), no. 9, 4511-4536.

    [8] M. G. Crandall, H. Ishii, and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1-67.

    [9] F. Da Lio, Comparison results for quasilinear equations in annular domains and applications, Comm. Partial Differential Equations 27 (2002), no. 1-2, 283-323.

    [10] A. Davini, A. Fathi, R. Iturriaga, and M. Zavidovique, Convergence of the solutions of the discounted equation, Invent. Math. First online January, 2016 (Preprint is also available in arXiv:1408.6712).

    [11] L. C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), no. 3, 333-363.

    [12] D. A. Gomes, Duality principles for fully nonlinear elliptic equations, Trends in partial differential equations of mathematical physics, Progr. Nonlinear Differential Equations Appl., vol. 61, Birkh¨auser, Basel, 2005, pp. 125-136.

    [13] D. A. Gomes, H. Mitake, and H. V. Tran, The selection problem for discounted Hamilton-Jacobi equations: some non-convex cases, preprint.

    [14] H. Ishii, Weak KAM aspects of convex Hamilton-Jacobi equations with Neumann type boundary conditions, J. Math. Pures Appl. (9) 95 (2011), no. 1, 99-135.

    [15] H. Ishii and P.-L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations 83 (1990), no. 1, 26-78.

  • Metrics
    No metrics available
Share - Bookmark