Models of Quantum Space Time: Quantum Field Planes

Preprint English OPEN
Mack, G. ; Schomerus, V. (1994)
  • Subject: High Energy Physics - Theory

Quantum field planes furnish a noncommutative differential algebra $\Omega$ which substitutes for the commutative algebra of functions and forms on a contractible manifold. The data required in their construction come from a quantum field theory. The basic idea is to replace the ground field ${\bf C}$ of quantum planes by the noncommutative algebra ${\cal A}$ of observables of the quantum field theory.
  • References (28)
    28 references, page 1 of 3

    [2] D. Buchholz, G. Mack, I.T. Todorov, The current algebra on the circle as a germ of local field theories, Nucl. Phys B (Proc. Suppl.) 5B (1988) 20

    [3] A. Connes, Non-commutative differential geometry, Publ. Math. I.H.E.S. 62 (1985)

    [4] A. Connes, J. Lott, Particle models and noncommutative geometry Nucl. Phys. B18 (Proc.Suppl.) (1990) 29 Publ. Math. I.H.E.S. 62 (1985)

    [5] R. Dijkgraaf, H. Verlinde, E. Verlinde Notes on topological field theory and 2-D gravity Proc. Trieste Spring school 1990 p.91

    [6] S. Doplicher, R. Haag, J.E. Roberts, Fields, observables and gauge transformations I,II, Commun. Math. Phys. 13 (1969) 1 and 15 (1969) 173

    [7] S. Doplicher, R. Haag, J.E. Roberts, Local observables and particle statistics I,II, Commun. Math. Phys. 23 (1971) 199 and 35 (1974) 49

    [8] S. Doplicher, J.E.Roberts, C∗-algebras and duality for compact groups: why there is a compact group of internal gauge symmetries in particle physics, in: VIIIth international congress on mathematical physics, Marseille 1986, M.Mebkhout, R.S´en´eor (eds.) S. Doplicher, J.E. Roberts, Endomorphisms of C∗-algebras, cross products and duality for compact groups, Ann. of Math. 130 (1989) 75-119 S. Doplicher, J.E. Roberts, Wy there is a field algebra with a compact gauge group describing the superselection structure in particle physics, Commun. Math. Phys. 131 (1990) 51

    [9] V.G. Drinfel'd, Quasi Hopf algebras and Knizhnik Zamolodchikov equations, in: Problems of modern quantum field theory, Proceedings Alushta 1989, Research reports in physics, Springer Verlag Heidelberg 1989 V.G. Drinfel'd, Quasi-Hopf algebras, Leningrad. Math. J. Vol. 1 (1990), No. 6

    [10] K. Fredenhagen, K.H. Rehren, B. Schroer, Superselection sectors with braid group statistics and exchange algebras, I: general theory, Commun.Math.Phys. 125 (1989) 201

    [11] K. Fredenhagen, K.H. Rehren, B. Schroer, Superselection sectors with braid group statistics and exchange algebras,II: Geometric aspects and conformal covariance, Rev. Math. Phys., special issue(1992) 111

  • Metrics
    No metrics available
Share - Bookmark