20 references, page 1 of 2 [1] Brzezin´ski, T., Hopf-cyclic homology with contramodule coefficients. To appear in Quantum Groups and Noncommutative Spaces, M Marcolli and D Parashar (eds) Vieweg Verlag (MaxPlanck Series), Preprint 2008, arXiv:0806.0389.

[2] Brzezin´ski, T., Flat connections and (co)modules, New Techniques in Hopf Algebras and Graded Ring Theory, Universa Press, Wetteren, 2007 pp. 35-52. arxiv:math.QA/0608170.

[3] Connes, A., Noncommutative differential geometry. Inst. Hautes Etudes Sci. Publ. Math. No. 62 (1985), 257-360.

[4] Connes, A. and Moscovici, H., Background independent geometry and Hopf cyclic cohomology, arXiv:math.QA/0505475.

[5] Connes, A. and Moscovici, H., Transgressions of the Godbillon-Vey class and Rademacher functions,79-107, Aspects Math., E37, Vieweg, Wiesbaden, 2006.

[6] Connes, A. and Moscovici, H., Hopf algebras, cyclic cohomology and the transverse index theorem, Commun. Math. Phys. 198 (1998), 199-246.

[7] Crainic, M., Cyclic cohomology of Hopf algebras. J. Pure Appl. Algebra 166 (2002), no. 1-2, 29-66.

[8] Eilenberg, S. and Moore, J.C., Foundations of relative homological algebra, Mem. Amer. Math. Soc. 55 (1965).

[9] Getzler, E. and Jones, J. D. S., The cyclic homology of crossed product algebras, J. reine angew. Math. 445 (1993), 163-174.

[10] Gorokhovsky, A., : Secondary characteristic classes and cyclic cohomology of Hopf algebras, Topology 41(5), 993-1016 (2002)