publication . Preprint . Article . 2019

Graph quasivarieties

Erkko Lehtonen; Reinhard Pöschel;
Open Access English
  • Published: 27 May 2019
Abstract
Comment: 15 pages
Subjects
ACM Computing Classification System: MathematicsofComputing_DISCRETEMATHEMATICS
free text keywords: Mathematics - Rings and Algebras, Mathematics - Combinatorics, Applied Mathematics, Analysis

[1] K. A. Baker, G. F. McNulty, H. Werner, The finitely based varieties of graph algebras, Acta Sci. Math. (Szeged) 51 (1987) 3-15.

[2] C. Berge, Fa¨rbung von Graphen, deren s¨amtliche bzw. deren ungerade Kreise starr sind (Zusammenfassung), Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961) 114-115.

[3] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. of Math. (2) 164 (2006) 51-229.

[4] E. W. Kiss, A note on varieties of graph algebras. In: C. D. Comer (ed.), Universal algebra and lattice theory (Charleston, S.C., 1984), Lecture Notes in Math., 1149, Springer, Berlin, 1985, pp. 163-166,

[5] E. W. Kiss, R. Po¨schel, P. Pro¨hle, Subvarieties of varieties generated by graph algebras, Acta Sci. Math. (Szeged) 54 (1990) 57-75.

[6] G. F. McNulty, C. R. Shallon, Inherently nonfinitely based finite algebras. In: R. S. Freese, O. C. Garcia (eds.), Universal Algebra and Lattice Theory (Puebla, 1982), Lecture Notes in Math., 1004, Springer, Berlin, 1983, pp. 206-231.

[7] R. Po¨schel, Shallon-algebras and varieties for graphs and relational systems. In: J. Machner, G. Schaar (eds.), Algebra und Graphentheorie, Jahrestagung Algebra und Grenzgebiete 28.10.-1.11.1985 in Siebenlehn (GDR), Bergakademie Freiberg, Sektion Mathematik, 1986, pp. 53-56.

[8] R. Po¨schel, The equational logic for graph algebras, Z. Math. Logik Grundlag. Math. 35 (1989) 273-282.

[9] R. Po¨schel, Graph algebras and graph varieties, Algebra Universalis 27 (1990) 559-577.

[10] R. Po¨schel, W. Wessel, Classes of graphs definable by graph algebra identities or quasiidentities, Comment. Math. Univ. Carolin. 28 (1987) 581-592.

[11] C. R. Shallon, Non-finitely based binary algebras derived from lattices, Ph.D. thesis, University of California, Los Angeles, 1979.

[12] W. Wechler, Universal Algebra for Computer Scientists, EATCS Monogr. Theoret. Comput. Sci. 25, Springer, Berlin, 1992.

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Article . 2019

Graph quasivarieties

Erkko Lehtonen; Reinhard Pöschel;