Dense QCD in a Finite Volume

Preprint English OPEN
Yamamoto, Naoki; Kanazawa, Takuya;
(2009)
  • Related identifiers: doi: 10.1103/PhysRevLett.103.032001
  • Subject: High Energy Physics - Phenomenology | High Energy Physics - Lattice | High Energy Physics - Theory
    arxiv: High Energy Physics::Lattice

We study the properties of QCD at high baryon density in a finite volume where color superconductivity occurs. We derive exact sum rules for complex eigenvalues of the Dirac operator at finite chemical potential, and show that the Dirac spectrum is directly related to t... View more
  • References (25)
    25 references, page 1 of 3

    [1] Reviewed in, K. Yagi, T. Hatsuda and Y. Miake, Quark-Gluon Plasma, Cambridge Univ. press (Cambridge, 2005).

    [2] Reviewed in, F. Karsch, Proc, Sci., CPOD07 (2007) 026; Proc. Sci., LAT2007 (2007) 015.

    [3] Reviewed in, M. G. Alford, A. Schmitt, K. Rajagopal and T. Sch¨afer, Rev. Mod. Phys. 80, 1455 (2008).

    [4] M. G. Alford, K. Rajagopal and F. Wilczek, Nucl. Phys.B537, 443 (1999).

    [5] C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952); T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).

    [6] T. Banks and A. Casher, Nucl. Phys. B169, 103 (1980).

    [7] H. Leutwyler and A. V. Smilga, Phys. Rev. D 46, 5607 (1992).

    [8] When one factorizes the QCD partition function as Z(m) = Qn(m − mn) (mn: Lee-Yang zeros), the chiral condensate is given by hq¯qi = (1/V4) Pn 1/(m − mn). Then a nonzero chiral condensate in the thermodynamic limit V4 → ∞ implies the convergence to m = 0 of LeeYang zeros with an equidistant spacing ∼ 1/V4 [9].

    [9] M. A. Halasz, A. D. Jackson, and J. J. M. Verbaarschot, Phys. Rev. D 56, 5140 (1997); M. A. Halasz et al., Phys. Rev. D 58, 096007 (1998).

    [10] T. Sch¨afer, Phys. Rev. D 65, 094033 (2002); N. Yamamoto, J. High Energy Phys. 12 (2008) 060.

  • Metrics
Share - Bookmark