Volume of the space of qubitqubit channels and state transformations under random quantum channels

Related identifiers: doi: 10.1142/S0129055X18500198 
Subject: Mathematical Physics  81P16, 81P45, 94A17  Quantum Physicsarxiv: Computer Science::Information Theoryacm: Data_CODINGANDINFORMATIONTHEORY  ComputerSystemsOrganization_MISCELLANEOUS

References
(12)
12 references, page 1 of 2
 1
 2
[1] A. Andai. Volume of the quantum mechanical state space. Journal of Physiscs A: Mathematical and Theoretical, 39:1364113657, 2006.
[2] J. Bouda, M. Koniorczyk, and A. Varga. Random unitary qubit channels: entropy relations, private quantum channels and nonmalleability. The European Physical Journal D, 53(3):365372, 2009.
[3] W. Bruzda, V. Cappellini, H.J. Sommers, and K. Zyczkowski. Random quantum operations. Physics Letters A, 373(3):320324, 2009.
[4] M.D. Choi. Completely positive linear maps on complex matrices. Linear Algebra and Appl., 10:285290, 1975.
[5] A. Harrow, P. Hayden, and D. Leung. Superdense coding of quantum states. Phys. Rev. Lett., 92(18), 2004.
[6] A. Jamiol kowski. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Mathematical Phys., 3(4):275278, 1972.
[7] M. A. Neilsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2000.
[8] S. Omkar, R. Srikanth, and Subhashish Banerjee. Dissipative and nondissipative singlequbit channels: dynamics and geometry. Quantum Information Processing, 12(12):37253744, 2013.
[9] Igor Pak. Four questions on birkhoff polytope. Annals of Combinatorics, 4(1):8390, 2000.
[10] A. Pasieka, D. W. Kribs, R. Laflamme, and R. Pereira. On the geometric interpretation of single qubit quantum operations on the bloch sphere. Acta Appl. Math., 108(697), 2009.

Similar Research Results
(6)

Metrics
No metrics available

 Download from


Cite this publication