17 references, page 1 of 2

[1] E. E. Adams and L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer 2: spatial moments analysis Water Resources Res. 28(1992), 32933307. [OpenAIRE]

[2] S. Beckers, M. Yamamoto, Regularity and unique existence of solution to linear diffusion equation with multiple time-fractional derivatives, in: K. Bredies, C. Clason, K. Kunisch, G. von Winckel (Eds.), Control and Optimization with PDE Constraints, Birkh¨auser, Basel, 2013, pp. 45-56.

[3] M. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one dimensional fractional diffusion equation. Inverse Problems 25 (2009) 115002.

[4] R. Courant, D. Hilbert, Methods of Mathematical Physics, Wiley-VCH, 1989.

[5] K. Diethelm and Y. Luchko, Numerical solution of linear multi-term initial value problems of fractional order. J. Comput. Anal. Appl. 6 (2004), 243-263.

[6] Y. Hatno, N. Hatano, Dispersive transport of ions in column experiments: an explanation of long-tailed profiles, Water Resources Res. 34(1980) 1027-1033.

[7] Y. Hatano, Junichi Nakagawa, Shengzhang Wang, M. Yamamoto, Determination of order in fractional diffusion equation. J. Math-for-Ind. 5A (2013), 5157.

[8] Gongsheng Li, Dali Zhang, Xianzheng Jia, M. Yamamoto, Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation. Inverse Problems 29 (2013), no. 6, 065014, 36 pp.

[9] Zhiyuan Li, M. Yamamoto, Initial-boundary value problems for linear diffusion equation with multiple time-fractional derivatives, arXiv:1306.2778v2, 2013.

[10] Zhiyuan Li, Yikan Liu and M. Yamamoto, Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients, arXiv: 1312.2112, 2013. [OpenAIRE]

[11] Y. Luchko, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Computers and Mathematics with Applications 59 (2010), 1766-1772. [OpenAIRE]

[12] Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374 (2011), 538-548. [OpenAIRE]

[13] Y. Luchko, R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnam, 24 (1999) 207-233.

[14] F. Mainardi, Antonio Mura, Gianni Pagnini and R. Gorenflo, Time-fractional diffusion of distributed order. J. Vib. Control 14 (2008), no. 9-10, 12671290.

[15] R. Metzler, J, Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Physics Reports 339 (2000), 1-77.

17 references, page 1 of 2