Share  Bookmark

 Download from


[1] I.D. Albu and D. Opri¸s. Helmholtz type condition for mechanical integrators. Novi Sad J. Math., 29(3):1121, 1999. XII Yugoslav Geometric Seminar (Novi Sad, 1998).
[2] V. I. Arnold. Mathematical methods of classical mechanics, volume 60 of Graduate Texts in Mathematics. SpringerVerlag, New York, 1979.
[3] Z. Bartosiewicz, U. Kotta, E. Pawluszewicz, M. Wyrwas, Algebraic formalism of differntial oneforms for nonlinear control systems on time scales, Proc. Estonian Acad. Sci. Phys. Math., 2007, 56, 3, 264282.
[4] Bismut, JM. 1981, M´ecanique al´eatoire, Lecture notes in mathematics (SpringerVerlag).
[5] L. Bourdin, J. Cresson. Helmholtz's inverse problem of the discrete calculus of variations. Journal of Difference Equations and Applications, 19(9):14171436, 2013.
[6] J. Cresson, F. Pierret, Discrete versus continuous structures I  Discrete embedding and differential equations, arXiv:1411.7117, 2014.
[7] D. Cr˘aciun and D. Opri¸s. The Helmholtz conditions for the difference equations systems. Balkan J. Geom. Appl., 1(2):2130, 1996.
[8] S. Lall, M. West, Discrete variational Hamiltonian mechanics, J. Phys. A : Math. Gen. 39 (2006), 55095519.
[9] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration, volume 31 of Springer Series in Computational Mathematics. SpringerVerlag, Berlin, second edition, 2006. Structurepreserving algorithms for ordinary differential equations.
[10] P.E. Hydon, E.L. Mansfeld, A variational complex for difference equations, 44.p.